==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOSKELETON 16-AUG-99 1QKW . COMPND 2 MOLECULE: ALPHA II SPECTRIN; . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR M.C.VEGA,J.MARTINEZ,L.SERRANO . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3907.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 22 38.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A K 0 0 140 0, 0.0 28,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0-132.4 0.1 1.7 4.2 2 7 A E - 0 0 42 26,-0.3 26,-2.4 25,-0.1 2,-0.4 -0.129 360.0-113.9 -80.1 180.0 3.0 0.3 6.2 3 8 A L E -A 27 0A 80 24,-0.2 53,-2.1 36,-0.0 54,-1.0 -0.937 25.8-166.7-120.6 140.6 2.9 -1.4 9.6 4 9 A V E -AB 26 55A 0 22,-2.9 22,-2.8 -2,-0.4 2,-0.5 -0.907 17.9-127.0-125.0 155.6 4.4 -0.0 12.8 5 10 A L E -AB 25 54A 50 49,-2.8 49,-1.5 -2,-0.3 2,-0.6 -0.907 21.5-125.5-103.6 127.9 5.1 -1.7 16.2 6 11 A A E - B 0 53A 1 18,-2.9 17,-3.0 -2,-0.5 47,-0.2 -0.604 24.8-175.7 -72.5 115.2 3.8 -0.1 19.4 7 12 A L + 0 0 54 45,-3.0 2,-0.3 -2,-0.6 -1,-0.2 0.764 68.1 22.1 -81.8 -30.6 6.8 0.3 21.6 8 13 A Y S S- 0 0 133 44,-0.9 2,-0.2 13,-0.1 -1,-0.1 -0.889 86.6 -99.9-134.2 163.9 4.8 1.6 24.6 9 14 A D - 0 0 87 -2,-0.3 2,-0.3 12,-0.2 12,-0.3 -0.539 40.0-172.3 -77.9 149.1 1.3 1.6 25.8 10 15 A Y B -F 20 0B 18 10,-2.7 10,-2.5 -2,-0.2 2,-0.4 -0.861 12.5-160.5-151.8 112.4 -0.6 4.8 25.1 11 16 A Q - 0 0 111 -2,-0.3 8,-0.1 8,-0.2 7,-0.1 -0.813 34.2-108.4 -92.8 133.3 -4.0 5.8 26.3 12 17 A E + 0 0 94 -2,-0.4 7,-0.1 1,-0.1 -1,-0.1 -0.182 33.0 179.6 -56.9 150.2 -5.7 8.5 24.3 13 18 A K + 0 0 142 1,-0.2 -1,-0.1 5,-0.1 -2,-0.0 0.373 64.8 43.2-133.2 -4.5 -6.1 11.9 25.9 14 19 A S S > S- 0 0 45 1,-0.0 3,-1.7 4,-0.0 -1,-0.2 -0.929 88.8-104.2-139.7 162.0 -7.8 13.9 23.1 15 20 A P T 3 S+ 0 0 116 0, 0.0 -3,-0.0 0, 0.0 -1,-0.0 0.741 120.4 51.1 -58.7 -27.3 -10.8 13.2 20.8 16 21 A R T 3 S+ 0 0 179 30,-0.1 31,-2.4 2,-0.0 2,-0.1 0.498 96.3 94.7 -89.9 -4.9 -8.4 12.7 17.8 17 22 A E B < -c 47 0A 26 -3,-1.7 2,-0.3 29,-0.3 31,-0.2 -0.352 57.9-151.6 -88.2 165.3 -6.2 10.2 19.7 18 23 A V - 0 0 2 29,-1.7 2,-0.2 -2,-0.1 28,-0.1 -0.991 16.3-120.9-136.9 143.7 -6.3 6.4 19.8 19 24 A T + 0 0 39 -2,-0.3 2,-0.3 -8,-0.1 -8,-0.2 -0.607 32.4 174.2 -85.2 144.2 -5.3 3.9 22.5 20 25 A M B -F 10 0B 4 -10,-2.5 -10,-2.7 -2,-0.2 2,-0.4 -0.955 21.5-138.4-143.4 163.1 -2.6 1.3 21.9 21 26 A K > - 0 0 128 -2,-0.3 3,-2.6 -12,-0.3 -15,-0.2 -0.968 37.9 -93.9-127.3 137.1 -0.8 -1.4 23.9 22 27 A K T 3 S+ 0 0 130 -2,-0.4 -15,-0.2 1,-0.3 -13,-0.1 -0.231 114.8 32.4 -45.7 132.2 3.0 -2.2 23.7 23 28 A G T 3 S+ 0 0 45 -17,-3.0 -1,-0.3 1,-0.4 -16,-0.1 0.106 87.7 133.9 102.7 -24.4 3.4 -5.1 21.2 24 29 A D < - 0 0 52 -3,-2.6 -18,-2.9 -18,-0.1 2,-0.6 -0.206 50.7-140.0 -58.9 150.0 0.5 -4.0 19.0 25 30 A I E -A 5 0A 94 -20,-0.2 17,-0.4 -3,-0.1 2,-0.3 -0.974 26.6-173.6-114.8 113.7 1.0 -3.9 15.2 26 31 A L E -A 4 0A 0 -22,-2.8 -22,-2.9 -2,-0.6 2,-0.6 -0.807 27.4-117.7-112.0 156.3 -0.7 -0.8 13.7 27 32 A T E -AD 3 40A 45 13,-1.8 13,-1.5 -2,-0.3 2,-0.5 -0.814 30.7-130.0 -91.4 120.3 -1.3 0.3 10.2 28 33 A L E + D 0 39A 0 -26,-2.4 -26,-0.3 -2,-0.6 11,-0.2 -0.643 34.0 169.3 -72.5 119.9 0.5 3.6 9.5 29 34 A L E + 0 0 60 9,-3.0 2,-0.3 -2,-0.5 10,-0.2 0.775 64.2 7.5-102.3 -36.5 -2.0 6.0 7.9 30 35 A N E + D 0 38A 59 8,-1.9 8,-2.2 1,-0.1 3,-0.3 -0.821 48.5 168.2-155.8 109.6 -0.3 9.4 7.9 31 36 A S + 0 0 35 -2,-0.3 6,-0.1 6,-0.2 -1,-0.1 0.032 47.0 112.7-110.4 28.5 3.3 10.3 8.9 32 37 A T + 0 0 129 6,-0.0 2,-0.4 2,-0.0 -1,-0.2 0.779 66.1 72.2 -68.7 -30.3 3.4 13.9 7.6 33 38 A N S S- 0 0 76 3,-0.4 17,-0.1 -3,-0.3 -3,-0.0 -0.735 73.4-147.8 -90.1 134.3 3.7 15.2 11.2 34 39 A K S S+ 0 0 167 -2,-0.4 -1,-0.1 1,-0.1 3,-0.1 0.743 95.5 35.8 -73.5 -18.6 6.9 14.7 13.0 35 40 A D S S+ 0 0 86 1,-0.2 15,-1.9 15,-0.1 16,-0.4 0.788 119.7 35.9-104.4 -36.8 5.3 14.4 16.5 36 41 A W E - E 0 49A 87 13,-0.3 -3,-0.4 14,-0.1 2,-0.4 -0.983 62.9-163.9-123.9 135.5 2.0 12.6 15.9 37 42 A W E - E 0 48A 42 11,-2.7 11,-1.7 -2,-0.4 2,-0.6 -0.945 20.3-129.6-118.6 132.5 1.2 9.8 13.4 38 43 A K E +DE 30 47A 67 -8,-2.2 -9,-3.0 -2,-0.4 -8,-1.9 -0.758 41.1 166.6 -81.8 125.4 -2.2 8.7 12.4 39 44 A V E -DE 28 46A 0 7,-2.9 7,-1.1 -2,-0.6 2,-0.5 -0.751 37.0-122.6-132.0 171.7 -2.5 5.0 12.8 40 45 A E E -DE 27 45A 57 -13,-1.5 -13,-1.8 -2,-0.2 2,-0.6 -0.996 22.3-169.4-122.5 118.5 -5.1 2.2 12.8 41 46 A V E > - E 0 44A 2 3,-3.0 3,-2.0 -2,-0.5 2,-0.6 -0.967 65.1 -49.7-109.2 113.8 -5.2 0.1 15.9 42 47 A G T 3 S- 0 0 72 -2,-0.6 -15,-0.1 -17,-0.4 -2,-0.0 -0.447 126.2 -18.1 62.2-108.1 -7.4 -2.9 15.5 43 48 A D T 3 S+ 0 0 153 -2,-0.6 2,-0.3 2,-0.1 -1,-0.3 0.044 123.4 78.6-119.6 23.0 -10.6 -1.3 14.1 44 49 A R E < - E 0 41A 106 -3,-2.0 -3,-3.0 -25,-0.1 2,-0.2 -0.975 59.3-150.1-136.9 147.4 -10.1 2.3 15.1 45 50 A Q E + E 0 40A 106 -2,-0.3 2,-0.3 -5,-0.3 -5,-0.2 -0.556 35.3 105.3-106.4 174.4 -8.0 5.2 13.8 46 51 A G E - E 0 39A 6 -7,-1.1 -7,-2.9 -2,-0.2 2,-0.3 -0.845 59.5 -51.5 143.3-179.7 -6.4 8.2 15.4 47 52 A F E +cE 17 38A 62 -31,-2.4 -29,-1.7 -2,-0.3 -9,-0.2 -0.680 38.9 172.1 -99.7 145.4 -3.1 9.8 16.5 48 53 A V E - E 0 37A 0 -11,-1.7 -11,-2.7 -2,-0.3 2,-0.3 -0.958 49.3 -79.2-140.3 154.5 -0.3 8.4 18.7 49 54 A P E > - E 0 36A 16 0, 0.0 3,-3.0 0, 0.0 4,-0.3 -0.415 34.1-140.3 -61.6 117.4 3.1 9.9 19.5 50 55 A A G > S+ 0 0 11 -15,-1.9 3,-1.4 -2,-0.3 -14,-0.1 0.823 101.2 62.0 -43.2 -37.8 5.4 9.2 16.5 51 56 A A G 3 S+ 0 0 78 -16,-0.4 -1,-0.3 1,-0.3 -15,-0.1 0.594 94.0 60.4 -66.6 -21.8 8.1 8.4 19.0 52 57 A Y G < S+ 0 0 91 -3,-3.0 -45,-3.0 -45,-0.1 -44,-0.9 0.390 100.0 62.8 -90.4 0.9 6.3 5.5 20.6 53 58 A V E < -B 6 0A 12 -3,-1.4 2,-0.4 -4,-0.3 -47,-0.2 -0.874 64.9-149.5-123.9 160.3 6.1 3.4 17.4 54 59 A K E -B 5 0A 125 -49,-1.5 -49,-2.8 -2,-0.3 2,-0.3 -0.992 20.6-123.0-130.5 134.2 8.7 1.8 15.1 55 60 A K E +B 4 0A 91 -2,-0.4 -51,-0.2 -51,-0.2 -2,-0.0 -0.595 26.6 175.8 -76.4 136.3 8.4 1.2 11.4 56 61 A L 0 0 86 -53,-2.1 -1,-0.2 -2,-0.3 -52,-0.1 0.786 360.0 360.0-100.9 -55.8 8.8 -2.4 10.3 57 62 A D 0 0 168 -54,-1.0 -55,-0.0 0, 0.0 -53,-0.0 0.213 360.0 360.0 62.3 360.0 8.0 -2.0 6.6