==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOSKELETON 16-AUG-99 1QKX . COMPND 2 MOLECULE: SPECTRIN ALPHA CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR M.C.VEGA,J.MARTINEZ,L.SERRANO . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4036.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 60.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 22 37.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A G 0 0 70 0, 0.0 29,-0.1 0, 0.0 30,-0.1 0.000 360.0 360.0 360.0 148.7 -1.1 4.5 4.8 2 6 A K + 0 0 196 2,-0.1 28,-0.1 26,-0.0 2,-0.0 0.471 360.0 100.1-129.5 -17.3 -0.6 0.7 4.4 3 7 A E - 0 0 69 26,-0.4 26,-2.9 25,-0.1 2,-0.3 -0.246 66.1-122.6 -73.5 161.5 2.7 0.1 6.2 4 8 A L E -A 28 0A 70 24,-0.2 53,-2.7 36,-0.0 54,-0.5 -0.763 21.0-170.4-109.0 152.0 2.9 -1.4 9.7 5 9 A V E -AB 27 56A 0 22,-2.4 22,-2.9 -2,-0.3 2,-0.4 -0.932 20.1-126.8-134.9 156.6 4.5 -0.1 12.9 6 10 A L E -AB 26 55A 54 49,-2.5 49,-2.1 -2,-0.3 2,-0.5 -0.910 23.3-123.3-105.9 131.9 5.1 -1.7 16.3 7 11 A A E - B 0 54A 2 18,-2.6 17,-2.6 -2,-0.4 47,-0.2 -0.639 21.4-169.1 -75.5 121.7 3.9 0.0 19.5 8 12 A L S S+ 0 0 54 45,-3.2 2,-0.3 -2,-0.5 46,-0.2 0.680 70.2 11.9 -83.4 -21.8 7.0 0.5 21.7 9 13 A Y S S- 0 0 133 44,-0.8 2,-0.2 13,-0.1 -1,-0.1 -0.919 87.4 -91.2-147.7 166.4 4.9 1.4 24.8 10 14 A D - 0 0 104 -2,-0.3 2,-0.3 12,-0.2 12,-0.3 -0.520 43.0-171.9 -75.7 155.1 1.4 1.4 26.0 11 15 A Y B -F 21 0B 36 10,-2.8 10,-2.2 -2,-0.2 2,-0.5 -0.818 13.4-158.2-156.4 112.6 -0.4 4.7 25.3 12 16 A Q - 0 0 128 -2,-0.3 8,-0.1 8,-0.2 7,-0.1 -0.792 34.5-108.1 -92.6 127.6 -3.8 5.7 26.5 13 17 A E - 0 0 86 -2,-0.5 7,-0.1 1,-0.1 36,-0.1 -0.267 29.9-172.7 -53.5 137.6 -5.5 8.4 24.4 14 18 A K + 0 0 141 1,-0.1 -1,-0.1 5,-0.1 -2,-0.0 0.399 66.2 29.2-113.4 -2.6 -5.7 11.9 26.1 15 19 A S S > S- 0 0 49 1,-0.0 3,-1.9 4,-0.0 -1,-0.1 -0.967 90.8 -93.6-152.4 163.6 -7.9 13.7 23.6 16 20 A P T 3 S+ 0 0 136 0, 0.0 -3,-0.0 0, 0.0 -1,-0.0 0.779 120.6 50.4 -50.3 -36.5 -10.7 13.1 21.1 17 21 A R T 3 S+ 0 0 152 30,-0.1 31,-2.5 2,-0.0 2,-0.1 0.503 96.9 89.1 -85.3 -3.3 -8.3 12.7 18.1 18 22 A E B < -c 48 0A 26 -3,-1.9 2,-0.3 29,-0.3 31,-0.2 -0.388 60.7-149.8 -91.4 169.9 -6.0 10.2 19.8 19 23 A V - 0 0 2 29,-1.5 2,-0.3 -2,-0.1 -5,-0.1 -0.969 16.1-118.1-138.2 150.9 -6.2 6.4 20.0 20 24 A T + 0 0 24 -2,-0.3 2,-0.3 -8,-0.1 -8,-0.2 -0.705 32.2 173.8 -92.1 142.7 -5.1 3.9 22.6 21 25 A M B -F 11 0B 2 -10,-2.2 -10,-2.8 -2,-0.3 2,-0.3 -0.948 21.8-137.3-141.8 160.8 -2.5 1.2 22.0 22 26 A K > - 0 0 114 -2,-0.3 3,-2.2 -12,-0.3 -15,-0.2 -0.913 40.3 -90.9-118.1 147.1 -0.6 -1.5 24.1 23 27 A K T 3 S+ 0 0 143 -2,-0.3 -15,-0.2 1,-0.3 3,-0.1 -0.275 115.5 30.9 -54.8 135.9 3.1 -2.3 23.8 24 28 A G T 3 S+ 0 0 44 -17,-2.6 -1,-0.3 1,-0.3 -16,-0.1 0.182 86.0 137.6 98.2 -18.5 3.5 -5.0 21.2 25 29 A D < - 0 0 50 -3,-2.2 -18,-2.6 -19,-0.1 2,-0.6 -0.299 49.7-138.8 -62.7 147.2 0.6 -4.0 19.1 26 30 A I E -A 6 0A 92 -20,-0.2 17,-0.4 -3,-0.1 2,-0.3 -0.951 29.7-174.8-108.6 115.9 1.0 -4.0 15.3 27 31 A L E -A 5 0A 2 -22,-2.9 -22,-2.4 -2,-0.6 2,-0.6 -0.835 28.1-118.3-116.1 156.6 -0.7 -0.9 13.9 28 32 A T E -AD 4 41A 37 13,-1.9 13,-1.5 -2,-0.3 2,-0.6 -0.811 29.4-131.8 -93.8 119.3 -1.3 0.3 10.4 29 33 A L E + D 0 40A 2 -26,-2.9 -26,-0.4 -2,-0.6 11,-0.2 -0.640 30.4 174.0 -72.4 113.0 0.4 3.7 9.8 30 34 A L E + 0 0 42 9,-2.8 2,-0.3 -2,-0.6 10,-0.2 0.865 66.2 0.0 -89.3 -39.1 -2.2 6.0 8.2 31 35 A N E + D 0 39A 68 8,-1.8 8,-2.6 -30,-0.1 -1,-0.3 -0.917 49.2 169.4-158.1 119.1 -0.3 9.3 8.1 32 36 A S + 0 0 43 -2,-0.3 6,-0.1 6,-0.2 -1,-0.0 -0.014 47.7 113.2-118.4 27.5 3.2 10.2 9.2 33 37 A T + 0 0 127 4,-0.1 2,-0.4 2,-0.0 -1,-0.1 0.787 64.8 76.4 -69.4 -28.0 3.5 13.7 7.7 34 38 A N S S- 0 0 75 3,-0.4 -3,-0.0 -3,-0.1 5,-0.0 -0.727 76.1-144.9 -87.7 133.0 3.6 15.2 11.2 35 39 A K S S+ 0 0 164 -2,-0.4 -1,-0.1 1,-0.2 3,-0.1 0.806 95.7 32.2 -65.1 -30.2 6.9 14.9 13.1 36 40 A D S S+ 0 0 82 1,-0.2 15,-2.3 15,-0.1 2,-0.4 0.768 118.6 39.2-102.3 -32.0 5.2 14.4 16.5 37 41 A W E - E 0 50A 91 13,-0.3 -3,-0.4 14,-0.1 2,-0.4 -0.978 61.9-164.7-129.4 121.7 1.9 12.7 16.0 38 42 A W E - E 0 49A 42 11,-2.2 11,-2.0 -2,-0.4 2,-0.5 -0.831 20.3-129.9-105.3 136.3 1.3 9.8 13.6 39 43 A K E +DE 31 48A 53 -8,-2.6 -9,-2.8 -2,-0.4 -8,-1.8 -0.777 39.4 169.3 -86.5 126.5 -2.2 8.7 12.6 40 44 A V E -DE 29 47A 0 7,-3.1 7,-2.2 -2,-0.5 2,-0.5 -0.822 34.4-126.8-132.4 169.3 -2.5 4.9 13.1 41 45 A E E -DE 28 46A 49 -13,-1.5 -13,-1.9 -2,-0.3 2,-0.5 -0.996 20.3-169.7-123.7 119.3 -5.2 2.2 13.1 42 46 A V E > - E 0 45A 3 3,-3.1 3,-2.5 -2,-0.5 2,-0.2 -0.978 67.8 -44.8-110.0 117.4 -5.3 -0.1 16.1 43 47 A A T 3 S- 0 0 84 -2,-0.5 -15,-0.1 -17,-0.4 -2,-0.0 -0.439 126.9 -27.0 55.3-121.6 -7.6 -3.1 15.6 44 48 A D T 3 S+ 0 0 146 -2,-0.2 2,-0.4 -3,-0.1 -1,-0.3 -0.105 123.0 95.4-112.7 36.1 -10.6 -1.2 14.1 45 49 A R E < - E 0 42A 107 -3,-2.5 -3,-3.1 -25,-0.1 2,-0.3 -0.949 54.3-161.8-123.6 146.3 -9.9 2.1 15.8 46 50 A Q E + E 0 41A 103 -2,-0.4 2,-0.3 -5,-0.3 -5,-0.2 -0.940 28.7 107.7-128.7 151.4 -8.0 5.1 14.3 47 51 A G E - E 0 40A 2 -7,-2.2 -7,-3.1 -2,-0.3 2,-0.3 -0.970 59.6 -60.5 167.4-177.2 -6.3 8.1 15.8 48 52 A F E +cE 18 39A 51 -31,-2.5 -29,-1.5 -2,-0.3 -9,-0.2 -0.702 39.9 174.0 -96.6 145.9 -3.1 9.8 16.6 49 53 A V E - E 0 38A 0 -11,-2.0 -11,-2.2 -2,-0.3 2,-0.2 -0.929 49.1 -75.9-139.9 157.8 -0.4 8.6 18.9 50 54 A P E > - E 0 37A 16 0, 0.0 3,-1.8 0, 0.0 -13,-0.3 -0.427 38.4-137.9 -60.3 129.3 3.1 10.0 19.6 51 55 A A G > S+ 0 0 10 -15,-2.3 3,-1.4 1,-0.3 -14,-0.1 0.837 100.8 59.0 -55.5 -37.0 5.4 9.2 16.7 52 56 A A G 3 S+ 0 0 80 -16,-0.4 -1,-0.3 1,-0.3 -15,-0.1 0.588 95.1 65.2 -73.1 -9.0 8.3 8.3 18.9 53 57 A Y G < S+ 0 0 92 -3,-1.8 -45,-3.2 -45,-0.1 -44,-0.8 0.371 98.5 58.5 -93.6 1.5 6.3 5.6 20.6 54 58 A V E < -B 7 0A 9 -3,-1.4 2,-0.4 -47,-0.2 -47,-0.2 -0.923 68.4-147.5-127.8 156.3 6.0 3.4 17.5 55 59 A K E -B 6 0A 128 -49,-2.1 -49,-2.5 -2,-0.3 -3,-0.1 -0.989 22.3-119.3-128.1 125.1 8.6 1.8 15.2 56 60 A K E -B 5 0A 82 -2,-0.4 -51,-0.3 -51,-0.2 -53,-0.0 -0.333 13.0-146.2 -59.4 138.9 8.2 1.3 11.5 57 61 A L 0 0 86 -53,-2.7 -1,-0.2 0, 0.0 -52,-0.1 0.686 360.0 360.0 -80.3 -18.4 8.4 -2.4 10.6 58 62 A D 0 0 183 -54,-0.5 -2,-0.1 0, 0.0 -55,-0.0 -0.826 360.0 360.0 -96.5 360.0 10.1 -1.5 7.3