==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 17-AUG-99 1QKY . COMPND 2 MOLECULE: TOXIN 7 FROM PANDINUS IMPERATOR; . SOURCE 2 ORGANISM_SCIENTIFIC: PANDINUS IMPERATOR; . AUTHOR M.DELEPIERRE,A.PROCHNICKA-CHALUFOUR,J.BOISBOUVIER, . 38 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3291.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 231 0, 0.0 2,-0.3 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0-100.5 6.5 -2.8 12.8 2 2 A E - 0 0 174 1,-0.2 3,-0.1 3,-0.0 0, 0.0 -0.969 360.0 -42.6-142.4 122.4 6.7 0.9 11.7 3 3 A A S S- 0 0 71 -2,-0.3 2,-0.3 1,-0.1 -1,-0.2 -0.081 77.2 -88.9 49.4-161.0 4.4 2.3 9.0 4 4 A I - 0 0 70 28,-0.3 28,-1.8 -3,-0.1 2,-0.2 -0.957 44.3-171.7-139.1 129.4 3.8 0.2 5.8 5 5 A R B -A 31 0A 148 -2,-0.3 2,-0.3 26,-0.3 26,-0.3 -0.747 6.8-149.0-119.1 169.8 6.2 0.4 2.8 6 6 A a - 0 0 3 24,-2.6 3,-0.1 -2,-0.2 4,-0.1 -1.000 24.0-138.0-142.7 138.0 6.1 -1.1 -0.7 7 7 A T S S- 0 0 118 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.892 91.7 -38.8 -59.0 -37.5 8.6 -2.2 -3.4 8 8 A G S >> S- 0 0 31 1,-0.1 4,-1.9 -3,-0.1 3,-1.0 -0.939 79.8 -65.9-170.8 179.1 6.2 -0.4 -5.8 9 9 A T H 3> S+ 0 0 78 -2,-0.3 4,-0.9 1,-0.3 3,-0.2 0.871 128.0 47.2 -42.0 -57.7 2.5 0.2 -6.5 10 10 A K H 34 S+ 0 0 170 1,-0.2 4,-0.3 2,-0.2 -1,-0.3 0.741 110.8 52.7 -69.0 -22.6 1.6 -3.4 -7.3 11 11 A D H X4 S+ 0 0 66 -3,-1.0 3,-2.0 1,-0.2 -1,-0.2 0.887 99.8 63.2 -74.3 -37.4 3.4 -4.7 -4.3 12 12 A b H 3X S+ 0 0 1 -4,-1.9 4,-2.2 1,-0.3 -2,-0.2 0.757 87.5 71.3 -59.0 -28.8 1.5 -2.3 -2.0 13 13 A Y H 3X S+ 0 0 68 -4,-0.9 4,-2.8 2,-0.2 -1,-0.3 0.818 91.7 62.3 -56.0 -31.2 -1.8 -4.0 -2.9 14 14 A I H <> S+ 0 0 102 -3,-2.0 4,-2.2 -4,-0.3 -2,-0.2 0.991 110.2 31.9 -63.6 -69.0 -0.5 -7.0 -0.8 15 15 A P H > S+ 0 0 29 0, 0.0 4,-2.8 0, 0.0 5,-0.5 0.803 119.2 57.3 -64.9 -26.1 -0.3 -5.3 2.7 16 16 A c H X>S+ 0 0 2 -4,-2.2 5,-2.2 2,-0.2 4,-0.5 0.994 112.6 38.2 -61.0 -59.2 -3.3 -3.1 1.7 17 17 A R H <5S+ 0 0 154 -4,-2.8 -1,-0.2 3,-0.2 -3,-0.2 0.743 119.7 50.3 -66.8 -21.0 -5.5 -6.1 1.0 18 18 A Y H <5S+ 0 0 205 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.886 128.4 17.6 -78.5 -43.1 -4.0 -7.9 4.0 19 19 A I H <5S+ 0 0 114 -4,-2.8 -3,-0.2 -5,-0.2 -2,-0.1 0.909 138.7 28.7 -91.4 -74.9 -4.5 -5.1 6.6 20 20 A T T <5S- 0 0 65 -4,-0.5 2,-1.6 -5,-0.5 -3,-0.2 0.791 86.5-153.8 -58.3 -31.0 -7.0 -2.6 5.2 21 21 A G < + 0 0 39 -5,-2.2 -1,-0.2 1,-0.3 -4,-0.1 -0.325 66.6 95.9 81.5 -52.4 -8.7 -5.5 3.2 22 22 A d S S- 0 0 34 -2,-1.6 -1,-0.3 -6,-0.1 15,-0.2 -0.267 73.4-138.5 -61.8 157.3 -10.0 -2.9 0.7 23 23 A F + 0 0 80 -3,-0.1 2,-0.3 -6,-0.1 14,-0.1 0.884 63.8 107.5 -91.1 -47.7 -7.9 -2.4 -2.4 24 24 A N + 0 0 60 12,-0.5 11,-3.0 10,-0.1 12,-0.9 -0.173 51.7 144.4 -48.8 101.2 -7.7 1.3 -3.3 25 25 A S E -B 34 0A 13 -2,-0.3 2,-0.3 9,-0.3 9,-0.3 -0.841 32.4-163.4-141.4 168.7 -4.0 2.2 -2.4 26 26 A R E -B 33 0A 136 7,-2.3 7,-2.3 -2,-0.2 2,-0.4 -0.979 19.1-129.6-153.1 147.2 -1.0 4.3 -3.4 27 27 A a E +B 32 0A 19 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.896 28.3 171.6-100.4 134.5 2.8 4.4 -2.7 28 28 A I E > S-B 31 0A 79 3,-2.7 3,-2.4 -2,-0.4 -2,-0.1 -0.971 75.2 -4.4-141.4 130.6 4.3 7.8 -1.6 29 29 A N T 3 S- 0 0 146 -2,-0.3 -1,-0.1 1,-0.3 3,-0.1 0.947 130.4 -61.5 46.1 51.1 7.9 8.0 -0.3 30 30 A K T 3 S+ 0 0 129 1,-0.2 -24,-2.6 -25,-0.1 2,-0.4 0.439 115.9 124.0 55.3 4.6 8.0 4.2 -0.7 31 31 A S E < -AB 5 28A 18 -3,-2.4 -3,-2.7 -26,-0.3 -26,-0.3 -0.762 62.2-125.9 -98.9 130.8 5.1 4.2 2.0 32 32 A b E - B 0 27A 15 -28,-1.8 2,-0.3 -2,-0.4 -28,-0.3 -0.505 24.3-175.8 -69.4 146.2 1.8 2.6 1.3 33 33 A K E - B 0 26A 128 -7,-2.3 -7,-2.3 -2,-0.2 2,-0.4 -0.962 7.3-161.4-140.7 117.8 -1.4 4.7 1.8 34 34 A c E - B 0 25A 43 -2,-0.3 -9,-0.3 -9,-0.3 3,-0.1 -0.879 12.4-160.7 -99.1 138.7 -4.8 3.0 1.4 35 35 A Y - 0 0 170 -11,-3.0 2,-0.3 1,-0.4 -10,-0.2 0.633 47.0-119.0 -81.9 -18.4 -7.9 5.2 0.8 36 36 A G - 0 0 20 -12,-0.9 -12,-0.5 -14,-0.1 -1,-0.4 -0.846 64.5 -11.5 108.9-154.3 -10.1 2.3 1.9 37 37 A d 0 0 82 -2,-0.3 -15,-0.1 -15,-0.2 -16,-0.0 -0.436 360.0 360.0 -72.7 156.9 -12.6 0.7 -0.4 38 38 A T 0 0 180 -2,-0.1 -1,-0.1 0, 0.0 -16,-0.0 0.918 360.0 360.0 -54.2 360.0 -13.5 2.4 -3.7