==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 16-JUL-07 2QMT . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR H.L.FRERICKS SCHMIDT,L.J.SPERLING,Y.G.GAO,B.J.WYLIE, . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3788.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 75.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 127 0, 0.0 19,-2.7 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 147.6 0.1 28.2 24.3 2 2 A Q E -A 19 0A 123 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.667 360.0-174.8 -83.1 132.0 -1.1 26.5 21.1 3 3 A Y E -A 18 0A 12 15,-2.5 15,-2.5 -2,-0.4 2,-0.4 -0.954 11.0-146.3-120.4 146.3 1.2 23.6 19.9 4 4 A K E -Ab 17 51A 65 46,-2.4 48,-3.3 -2,-0.3 2,-0.5 -0.886 5.5-156.7-118.3 144.1 0.6 21.8 16.6 5 5 A L E -Ab 16 52A 0 11,-3.1 11,-2.2 -2,-0.4 2,-0.6 -0.991 5.6-155.9-117.9 125.6 1.1 18.2 15.5 6 6 A I E -Ab 15 53A 64 46,-2.7 48,-2.5 -2,-0.5 2,-0.6 -0.902 15.6-151.8 -98.1 121.4 1.6 17.3 11.8 7 7 A L E +Ab 14 54A 6 7,-3.0 7,-2.0 -2,-0.6 48,-0.2 -0.859 27.8 163.1 -98.0 121.1 0.6 13.6 11.3 8 8 A N E +Ab 13 55A 71 46,-2.8 48,-2.3 -2,-0.6 5,-0.2 -0.497 25.7 150.0-131.9 58.5 2.3 11.7 8.5 9 9 A G - 0 0 1 3,-2.7 30,-0.1 46,-0.2 -2,-0.0 -0.344 63.9 -98.2 -77.7 171.6 1.5 8.2 9.5 10 10 A K S S- 0 0 154 1,-0.2 -1,-0.1 -2,-0.1 3,-0.1 0.905 118.9 -1.6 -58.4 -42.2 1.0 5.2 7.2 11 11 A T S S+ 0 0 137 1,-0.1 2,-0.6 0, 0.0 -1,-0.2 0.635 122.7 74.6-122.7 -20.8 -2.7 5.7 7.5 12 12 A L + 0 0 45 25,-0.1 -3,-2.7 26,-0.0 2,-0.3 -0.852 60.3 160.0 -98.3 117.8 -3.3 8.6 9.9 13 13 A K E +A 8 0A 125 -2,-0.6 2,-0.3 -5,-0.2 -5,-0.2 -0.946 22.4 57.8-133.2 157.1 -2.5 12.0 8.3 14 14 A G E S-A 7 0A 36 -7,-2.0 -7,-3.0 -2,-0.3 2,-0.3 -0.963 72.4 -63.5 130.5-146.1 -3.4 15.6 9.0 15 15 A E E +A 6 0A 121 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.996 32.6 179.9-145.3 148.7 -3.0 18.1 11.8 16 16 A T E -A 5 0A 55 -11,-2.2 -11,-3.1 -2,-0.3 2,-0.3 -0.975 12.1-150.8-143.7 157.9 -4.1 18.6 15.3 17 17 A T E -A 4 0A 73 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.916 7.2-168.4-126.0 157.0 -3.5 21.3 17.9 18 18 A T E -A 3 0A 33 -15,-2.5 -15,-2.5 -2,-0.3 2,-0.6 -0.991 22.3-128.4-141.8 149.7 -3.4 21.4 21.7 19 19 A E E +A 2 0A 118 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.878 42.9 162.5 -95.2 120.3 -3.3 24.1 24.4 20 20 A A - 0 0 11 -19,-2.7 3,-0.1 -2,-0.6 -2,-0.0 -0.965 50.0-125.4-143.0 157.1 -0.4 23.4 26.8 21 21 A V S S- 0 0 125 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.765 93.6 -6.0 -72.2 -25.2 1.6 25.2 29.4 22 22 A D S > S- 0 0 71 -21,-0.1 4,-2.2 1,-0.1 3,-0.2 -0.963 74.6 -97.8-162.9 169.5 4.9 24.2 27.7 23 23 A A H > S+ 0 0 20 -2,-0.3 4,-2.8 1,-0.2 5,-0.2 0.861 117.9 58.8 -68.9 -32.6 6.4 22.2 24.9 24 24 A A H > S+ 0 0 53 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.894 108.5 45.9 -64.0 -37.1 7.2 19.3 27.2 25 25 A T H > S+ 0 0 53 2,-0.2 4,-2.1 -3,-0.2 -2,-0.2 0.916 111.8 50.1 -72.0 -42.9 3.6 19.0 28.2 26 26 A A H X S+ 0 0 0 -4,-2.2 4,-2.9 1,-0.2 5,-0.2 0.886 106.5 57.6 -59.8 -39.0 2.4 19.2 24.6 27 27 A E H X S+ 0 0 71 -4,-2.8 4,-2.7 1,-0.2 5,-0.3 0.909 106.1 48.5 -57.5 -44.5 4.9 16.5 23.6 28 28 A K H X S+ 0 0 137 -4,-1.4 4,-2.3 2,-0.2 -1,-0.2 0.908 111.8 49.5 -63.3 -45.1 3.4 14.1 26.1 29 29 A V H X S+ 0 0 66 -4,-2.1 4,-2.4 1,-0.2 -2,-0.2 0.947 115.2 43.4 -58.7 -50.0 -0.1 14.8 24.9 30 30 A F H X S+ 0 0 4 -4,-2.9 4,-2.8 2,-0.2 -2,-0.2 0.888 112.9 50.1 -67.6 -40.4 0.9 14.3 21.2 31 31 A K H X S+ 0 0 83 -4,-2.7 4,-2.6 -5,-0.2 -1,-0.2 0.898 112.5 48.7 -68.0 -36.3 3.0 11.2 21.8 32 32 A Q H X S+ 0 0 124 -4,-2.3 4,-2.6 -5,-0.3 -2,-0.2 0.938 112.1 48.8 -64.8 -43.8 0.1 9.7 23.8 33 33 A Y H X S+ 0 0 76 -4,-2.4 4,-1.3 -5,-0.2 -2,-0.2 0.935 113.1 47.0 -59.8 -47.7 -2.3 10.6 21.0 34 34 A A H ><>S+ 0 0 1 -4,-2.8 5,-2.8 1,-0.2 3,-0.6 0.949 113.0 48.8 -61.9 -48.8 -0.0 9.1 18.4 35 35 A N H ><5S+ 0 0 112 -4,-2.6 3,-1.9 1,-0.2 -2,-0.2 0.922 109.2 52.2 -56.8 -44.9 0.5 5.9 20.4 36 36 A D H 3<5S+ 0 0 115 -4,-2.6 -1,-0.2 1,-0.3 -2,-0.2 0.738 110.6 48.9 -67.7 -23.7 -3.2 5.5 21.0 37 37 A N T <<5S- 0 0 81 -4,-1.3 -1,-0.3 -3,-0.6 -2,-0.2 0.203 120.7-106.8 -99.5 13.8 -3.9 5.8 17.2 38 38 A G T < 5 + 0 0 61 -3,-1.9 2,-0.6 1,-0.2 -3,-0.2 0.657 68.9 146.7 75.0 20.2 -1.2 3.2 16.4 39 39 A V < + 0 0 11 -5,-2.8 2,-0.5 -6,-0.2 -1,-0.2 -0.861 18.9 174.7 -93.0 121.9 1.4 5.7 15.0 40 40 A D + 0 0 144 -2,-0.6 2,-0.2 14,-0.0 14,-0.0 -0.929 31.8 124.6-126.8 92.5 4.9 4.6 15.7 41 41 A G - 0 0 12 -2,-0.5 2,-0.4 15,-0.1 15,-0.2 -0.631 60.2 -71.0-139.7-172.0 7.2 7.0 13.9 42 42 A E E -C 55 0A 150 13,-2.9 13,-2.2 -2,-0.2 2,-0.4 -0.788 47.1-147.2 -96.1 143.6 10.0 9.5 13.9 43 43 A W E -C 54 0A 69 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.844 18.0-178.4-119.5 143.0 9.5 12.9 15.6 44 44 A T E -C 53 0A 85 9,-1.9 9,-2.2 -2,-0.4 2,-0.3 -0.945 5.6-167.6-125.0 162.1 10.6 16.5 15.1 45 45 A Y E -C 52 0A 75 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.977 6.4-161.7-146.2 130.7 9.9 19.6 17.1 46 46 A D E >> -C 51 0A 87 5,-2.4 5,-1.3 -2,-0.3 4,-1.1 -0.952 2.8-164.3-115.8 114.0 10.6 23.2 16.2 47 47 A D T 45S+ 0 0 96 -2,-0.6 -1,-0.1 1,-0.2 5,-0.1 0.660 87.8 58.6 -71.1 -16.8 10.5 25.5 19.2 48 48 A A T 45S+ 0 0 86 1,-0.1 -1,-0.2 3,-0.1 -2,-0.0 0.850 118.5 28.9 -80.0 -36.0 10.2 28.6 17.0 49 49 A T T 45S- 0 0 82 -3,-0.5 -2,-0.2 2,-0.2 -45,-0.2 0.381 99.5-128.5-106.7 2.4 7.0 27.4 15.3 50 50 A K T <5 + 0 0 57 -4,-1.1 -46,-2.4 1,-0.2 2,-0.5 0.814 62.6 140.0 55.8 37.1 5.6 25.4 18.2 51 51 A T E < -bC 4 46A 26 -5,-1.3 -5,-2.4 -48,-0.2 2,-0.3 -0.934 36.0-168.7-122.9 129.5 5.1 22.5 15.7 52 52 A F E -bC 5 45A 6 -48,-3.3 -46,-2.7 -2,-0.5 2,-0.4 -0.765 7.9-162.2-101.3 150.2 5.8 18.8 16.2 53 53 A T E -bC 6 44A 31 -9,-2.2 -9,-1.9 -2,-0.3 2,-0.4 -0.992 6.5-167.5-131.5 146.6 5.8 16.2 13.4 54 54 A V E -bC 7 43A 0 -48,-2.5 -46,-2.8 -2,-0.4 2,-0.4 -0.998 11.8-178.2-131.7 131.6 5.4 12.4 13.5 55 55 A T E bC 8 42A 56 -13,-2.2 -13,-2.9 -2,-0.4 -46,-0.2 -0.989 360.0 360.0-133.5 129.7 6.2 10.4 10.4 56 56 A E 0 0 85 -48,-2.3 -15,-0.1 -2,-0.4 -17,-0.0 -0.663 360.0 360.0 -97.6 360.0 6.0 6.6 9.7