==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 15-OCT-03 1R6P . COMPND 2 MOLECULE: TROPONIN C; . SOURCE 2 ORGANISM_SCIENTIFIC: ONCORHYNCHUS MYKISS; . AUTHOR T.M.BLUMENSCHEIN,T.E.GILLIS,G.F.TIBBITS,B.D.SYKES . 89 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6272.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 62.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 4.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 41 46.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 192 0, 0.0 3,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 104.6 -5.6 10.3 8.7 2 2 A N > + 0 0 103 1,-0.1 4,-0.5 2,-0.1 3,-0.5 0.023 360.0 103.8-111.7 24.7 -5.4 7.8 5.8 3 3 A D H > + 0 0 82 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.648 64.0 75.4 -79.2 -16.3 -8.5 9.1 4.0 4 4 A I H > S+ 0 0 46 -3,-0.3 4,-1.8 1,-0.2 -1,-0.2 0.830 89.8 56.8 -65.0 -32.6 -6.4 10.9 1.4 5 5 A Y H > S+ 0 0 15 -3,-0.5 4,-1.0 1,-0.2 -1,-0.2 0.882 116.1 35.5 -66.0 -38.3 -5.6 7.6 -0.3 6 6 A K H X S+ 0 0 114 -4,-0.5 4,-1.4 2,-0.2 -2,-0.2 0.790 112.4 60.1 -84.3 -31.5 -9.3 7.0 -0.8 7 7 A A H X S+ 0 0 28 -4,-2.6 4,-0.7 2,-0.2 -2,-0.2 0.865 106.9 46.9 -64.7 -36.4 -10.2 10.6 -1.4 8 8 A A H >< S+ 0 0 28 -4,-1.8 3,-0.7 1,-0.2 -1,-0.2 0.912 111.7 48.8 -72.1 -43.5 -7.9 10.8 -4.4 9 9 A V H 3< S+ 0 0 35 -4,-1.0 3,-0.4 1,-0.2 -1,-0.2 0.743 109.2 55.9 -68.0 -21.9 -9.2 7.5 -6.0 10 10 A E H 3< S+ 0 0 150 -4,-1.4 -1,-0.2 1,-0.2 -2,-0.2 0.711 123.0 24.5 -81.9 -21.6 -12.8 8.9 -5.4 11 11 A Q S << S+ 0 0 150 -4,-0.7 -2,-0.2 -3,-0.7 -1,-0.2 -0.064 92.4 136.6-133.3 33.6 -12.0 12.0 -7.4 12 12 A L - 0 0 41 -3,-0.4 2,-0.2 1,-0.1 -3,-0.1 -0.173 53.4-102.5 -74.9 173.1 -9.2 10.9 -9.7 13 13 A T > - 0 0 92 1,-0.1 4,-1.3 0, 0.0 3,-0.5 -0.520 20.9-116.1 -95.4 165.7 -8.9 11.8 -13.4 14 14 A D H > S+ 0 0 111 1,-0.2 4,-1.0 2,-0.2 5,-0.2 0.821 114.1 65.7 -67.8 -30.9 -9.6 9.6 -16.4 15 15 A E H > S+ 0 0 139 1,-0.2 4,-2.6 2,-0.2 3,-0.3 0.853 101.7 48.8 -59.5 -35.0 -5.9 9.8 -17.4 16 16 A Q H > S+ 0 0 30 -3,-0.5 4,-1.6 1,-0.2 5,-0.5 0.893 107.2 54.2 -71.3 -40.4 -5.1 7.9 -14.2 17 17 A K H < S+ 0 0 80 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 0.655 119.8 34.7 -67.1 -16.3 -7.7 5.2 -15.0 18 18 A N H X S+ 0 0 68 -4,-1.0 4,-1.8 -3,-0.3 -2,-0.2 0.694 108.2 64.5-108.0 -29.8 -6.0 4.8 -18.4 19 19 A E H X S+ 0 0 100 -4,-2.6 4,-0.8 -5,-0.2 -3,-0.2 0.961 118.2 25.8 -58.8 -54.8 -2.3 5.4 -17.4 20 20 A F H X S+ 0 0 2 -4,-1.6 4,-3.2 1,-0.2 5,-0.2 0.862 116.4 63.3 -77.6 -38.0 -2.1 2.3 -15.2 21 21 A K H > S+ 0 0 87 -5,-0.5 4,-2.9 1,-0.2 5,-0.2 0.826 96.7 61.1 -56.6 -32.1 -4.9 0.4 -17.0 22 22 A A H X S+ 0 0 58 -4,-1.8 4,-1.6 2,-0.2 -1,-0.2 0.974 113.9 32.6 -58.8 -55.8 -2.6 0.4 -20.1 23 23 A A H X S+ 0 0 9 -4,-0.8 4,-2.5 1,-0.2 5,-0.3 0.864 116.4 59.9 -68.0 -35.9 0.1 -1.6 -18.3 24 24 A F H X S+ 0 0 20 -4,-3.2 4,-2.3 1,-0.2 -2,-0.2 0.892 105.2 48.5 -58.5 -42.4 -2.6 -3.4 -16.3 25 25 A D H < S+ 0 0 63 -4,-2.9 -1,-0.2 2,-0.2 -2,-0.2 0.916 112.7 46.2 -65.9 -45.9 -4.1 -4.7 -19.5 26 26 A I H >< S+ 0 0 96 -4,-1.6 3,-0.7 1,-0.2 4,-0.3 0.881 118.7 41.8 -65.9 -38.5 -0.9 -6.0 -21.0 27 27 A F H 3< S+ 0 0 50 -4,-2.5 3,-0.3 1,-0.2 -2,-0.2 0.823 118.0 46.6 -77.8 -31.4 0.2 -7.6 -17.8 28 28 A I T 3< S+ 0 0 26 -4,-2.3 -1,-0.2 -5,-0.3 -2,-0.2 -0.120 84.3 104.9-101.0 36.1 -3.3 -9.0 -17.1 29 29 A Q S < S+ 0 0 119 -3,-0.7 -1,-0.2 1,-0.2 -2,-0.1 0.949 88.0 31.2 -78.7 -53.2 -3.6 -10.3 -20.6 30 30 A D S S+ 0 0 162 -3,-0.3 2,-0.3 -4,-0.3 -1,-0.2 0.450 109.6 89.7 -85.2 -0.5 -3.1 -14.0 -20.0 31 31 A A - 0 0 32 -4,-0.1 5,-0.0 1,-0.1 -3,-0.0 -0.675 53.0-169.6 -98.0 153.1 -4.7 -13.6 -16.5 32 32 A E S S+ 0 0 189 -2,-0.3 -1,-0.1 2,-0.0 -3,-0.0 -0.191 71.5 75.4-132.5 40.6 -8.4 -14.0 -15.7 33 33 A D S S- 0 0 140 2,-0.2 3,-0.1 -5,-0.1 -5,-0.0 0.673 100.1-109.0-118.2 -38.8 -8.5 -12.7 -12.1 34 34 A G S S+ 0 0 32 1,-0.4 40,-0.5 -10,-0.1 2,-0.3 0.752 82.2 92.2 107.0 39.6 -8.2 -8.9 -12.5 35 35 A C E -A 73 0A 17 38,-0.2 -1,-0.4 -11,-0.1 38,-0.2 -0.973 64.6-125.5-160.4 145.9 -4.7 -8.3 -11.1 36 36 A I E -A 72 0A 3 36,-2.7 36,-1.2 -2,-0.3 2,-0.8 -0.330 40.1 -91.4 -87.0 173.1 -1.2 -8.0 -12.4 37 37 A S E > -A 71 0A 33 34,-0.2 3,-1.2 1,-0.2 34,-0.2 -0.784 26.3-158.3 -91.7 111.5 1.8 -10.0 -11.2 38 38 A T G > S+ 0 0 6 32,-1.3 3,-1.9 -2,-0.8 4,-0.2 0.892 96.6 54.8 -52.0 -43.4 3.6 -8.1 -8.4 39 39 A K G 3 S+ 0 0 151 31,-0.5 3,-0.4 1,-0.3 -1,-0.3 0.789 109.7 47.7 -62.4 -27.0 6.8 -10.2 -9.1 40 40 A E G X S+ 0 0 115 -3,-1.2 3,-1.1 1,-0.2 4,-0.4 0.175 79.3 104.4 -98.9 16.7 6.5 -8.9 -12.8 41 41 A L T X> + 0 0 0 -3,-1.9 4,-2.7 1,-0.2 3,-0.7 0.645 58.8 83.3 -71.6 -12.4 6.0 -5.3 -11.7 42 42 A G H 3> S+ 0 0 19 -3,-0.4 4,-1.7 1,-0.3 -1,-0.2 0.870 90.6 49.8 -57.5 -35.6 9.6 -4.6 -12.7 43 43 A K H <> S+ 0 0 123 -3,-1.1 4,-1.0 2,-0.2 -1,-0.3 0.743 110.3 52.3 -73.8 -23.4 8.2 -4.2 -16.3 44 44 A V H <> S+ 0 0 0 -3,-0.7 4,-2.4 -4,-0.4 3,-0.3 0.948 107.7 47.9 -76.0 -52.7 5.6 -1.8 -14.9 45 45 A M H X>S+ 0 0 4 -4,-2.7 5,-3.4 1,-0.2 4,-2.2 0.892 109.9 54.1 -55.5 -42.1 7.9 0.5 -13.0 46 46 A R H <5S+ 0 0 159 -4,-1.7 -1,-0.2 -5,-0.3 -2,-0.2 0.873 111.8 44.8 -60.8 -36.6 10.2 0.7 -16.1 47 47 A M H <5S+ 0 0 141 -4,-1.0 -1,-0.2 -3,-0.3 -2,-0.2 0.817 111.0 53.6 -75.7 -31.9 7.1 1.8 -18.1 48 48 A L H <5S- 0 0 50 -4,-2.4 -2,-0.2 2,-0.2 -1,-0.2 0.815 130.8 -91.6 -72.1 -30.5 6.1 4.2 -15.4 49 49 A G T <5S+ 0 0 65 -4,-2.2 2,-0.4 1,-0.4 -3,-0.2 0.511 93.0 99.5 128.5 16.8 9.5 5.9 -15.5 50 50 A Q < - 0 0 83 -5,-3.4 -1,-0.4 -6,-0.2 -2,-0.2 -0.988 47.0-163.4-133.9 142.2 11.6 4.0 -12.8 51 51 A N + 0 0 137 -2,-0.4 -9,-0.1 -5,-0.1 -8,-0.1 -0.647 31.9 154.2-124.1 75.0 14.1 1.1 -13.1 52 52 A P - 0 0 46 0, 0.0 -6,-0.0 0, 0.0 -2,-0.0 0.098 42.5 -89.7 -83.0-160.6 14.5 -0.4 -9.6 53 53 A T > - 0 0 54 1,-0.1 4,-2.8 0, 0.0 5,-0.2 -0.619 30.1-110.2-109.6 171.5 15.6 -3.9 -8.6 54 54 A P H > S+ 0 0 102 0, 0.0 4,-0.9 0, 0.0 -13,-0.1 0.799 120.7 47.2 -72.4 -26.8 13.5 -7.1 -7.9 55 55 A E H > S+ 0 0 149 2,-0.2 4,-0.7 3,-0.1 0, 0.0 0.822 117.5 41.9 -80.9 -34.2 14.2 -6.9 -4.2 56 56 A E H > S+ 0 0 123 2,-0.2 4,-1.5 1,-0.1 3,-0.3 0.909 113.4 50.1 -78.9 -46.0 13.4 -3.2 -4.0 57 57 A L H X S+ 0 0 9 -4,-2.8 4,-1.6 1,-0.2 -2,-0.2 0.858 106.8 56.9 -61.9 -35.6 10.3 -3.3 -6.3 58 58 A Q H X S+ 0 0 50 -4,-0.9 4,-2.5 -5,-0.2 -1,-0.2 0.857 103.0 55.6 -64.0 -35.1 8.8 -6.2 -4.3 59 59 A E H X S+ 0 0 119 -4,-0.7 4,-1.8 -3,-0.3 -2,-0.2 0.952 108.7 44.5 -62.5 -52.0 9.1 -4.0 -1.1 60 60 A M H X S+ 0 0 55 -4,-1.5 4,-2.1 1,-0.2 -1,-0.2 0.803 113.3 54.0 -63.9 -28.6 7.0 -1.1 -2.5 61 61 A I H X S+ 0 0 1 -4,-1.6 4,-2.9 2,-0.2 -2,-0.2 0.954 108.3 46.3 -70.3 -50.5 4.5 -3.7 -3.9 62 62 A D H < S+ 0 0 85 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.832 112.3 54.5 -60.4 -31.8 3.9 -5.5 -0.6 63 63 A E H < S+ 0 0 141 -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2 0.942 114.6 37.0 -67.3 -49.4 3.5 -2.0 1.0 64 64 A V H < S+ 0 0 10 -4,-2.1 2,-1.1 -5,-0.1 -2,-0.2 0.803 100.1 86.9 -73.3 -29.4 0.8 -0.9 -1.4 65 65 A D < - 0 0 6 -4,-2.9 -1,-0.1 1,-0.2 7,-0.1 -0.611 61.5-169.0 -76.3 100.5 -0.8 -4.4 -1.4 66 66 A E S S+ 0 0 169 -2,-1.1 -1,-0.2 1,-0.2 -4,-0.0 0.862 90.7 29.7 -57.5 -38.3 -3.1 -4.3 1.6 67 67 A D S S- 0 0 89 -3,-0.1 -1,-0.2 0, 0.0 -2,-0.1 0.817 95.4-143.0 -90.6 -36.6 -3.6 -8.0 1.3 68 68 A G + 0 0 35 3,-0.2 -6,-0.1 -7,-0.1 4,-0.1 0.944 41.3 155.1 71.6 49.0 -0.2 -8.9 -0.2 69 69 A S - 0 0 70 2,-0.4 3,-0.1 -7,-0.0 -1,-0.1 0.324 67.5-105.0 -88.5 6.2 -1.6 -11.7 -2.4 70 70 A G S S+ 0 0 33 1,-0.2 -32,-1.3 -33,-0.1 -31,-0.5 0.703 95.6 94.1 76.8 19.3 1.4 -11.3 -4.8 71 71 A T E -A 37 0A 36 -34,-0.2 2,-0.7 -33,-0.1 -2,-0.4 -0.992 67.6-139.9-146.3 135.0 -1.0 -9.5 -7.3 72 72 A V E -A 36 0A 0 -36,-1.2 -36,-2.7 -2,-0.3 2,-0.1 -0.850 19.0-155.9 -99.6 117.8 -1.7 -5.8 -7.9 73 73 A D E > -A 35 0A 56 -2,-0.7 4,-2.8 -38,-0.2 -38,-0.2 -0.348 34.8-102.2 -82.3 167.7 -5.4 -5.0 -8.5 74 74 A F H > S+ 0 0 48 -40,-0.5 4,-2.5 1,-0.2 5,-0.2 0.855 126.3 51.9 -60.0 -32.3 -6.4 -1.8 -10.4 75 75 A D H > S+ 0 0 93 2,-0.2 4,-1.5 1,-0.2 -1,-0.2 0.920 114.3 41.3 -68.8 -42.5 -7.3 -0.3 -7.0 76 76 A E H > S+ 0 0 5 2,-0.2 4,-1.6 1,-0.2 -2,-0.2 0.786 113.6 56.8 -72.9 -28.1 -3.8 -1.1 -5.6 77 77 A F H X S+ 0 0 0 -4,-2.8 4,-0.5 2,-0.2 -2,-0.2 0.946 111.9 38.3 -67.7 -51.5 -2.3 -0.1 -9.0 78 78 A L H >X S+ 0 0 3 -4,-2.5 4,-1.2 1,-0.2 3,-0.7 0.797 110.2 63.2 -70.9 -28.7 -3.7 3.5 -8.9 79 79 A V H 3X S+ 0 0 18 -4,-1.5 4,-3.0 1,-0.2 5,-0.2 0.940 92.3 62.9 -60.3 -47.9 -3.1 3.7 -5.2 80 80 A M H 3X S+ 0 0 11 -4,-1.6 4,-1.4 1,-0.2 -1,-0.2 0.796 99.8 57.1 -46.9 -32.3 0.6 3.4 -5.7 81 81 A M H