==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 06-APR-11 3RFI . COMPND 2 MOLECULE: ASP; . SOURCE 2 ORGANISM_SCIENTIFIC: SOLANUM TUBEROSUM; . AUTHOR P.BHAUMIK,A.WLODAWER . 80 2 3 0 3 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6121.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 65 81.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 53 66.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A A > 0 0 81 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -68.0 35.1 4.0 4.5 2 1 A I H > + 0 0 122 2,-0.2 4,-2.4 1,-0.2 5,-0.2 0.921 360.0 43.3 -59.6 -54.1 35.7 7.6 5.9 3 2 A V H > S+ 0 0 87 2,-0.2 4,-2.6 1,-0.2 -1,-0.2 0.920 114.0 52.2 -65.0 -41.7 33.4 9.7 3.6 4 3 A S H > S+ 0 0 13 1,-0.2 4,-3.0 2,-0.2 -1,-0.2 0.961 110.2 48.6 -57.5 -49.3 30.6 7.1 3.9 5 4 A M H X S+ 0 0 119 -4,-2.3 4,-2.5 1,-0.2 -1,-0.2 0.895 111.3 50.2 -53.6 -46.3 30.8 7.2 7.7 6 5 A E H X S+ 0 0 113 -4,-2.4 4,-2.4 2,-0.2 -1,-0.2 0.866 109.5 51.2 -62.7 -39.9 30.7 11.0 7.6 7 6 A a H X S+ 0 0 28 -4,-2.6 4,-2.2 2,-0.2 -2,-0.2 0.941 111.6 47.3 -59.0 -49.8 27.7 10.9 5.3 8 7 A K H X S+ 0 0 84 -4,-3.0 4,-3.0 2,-0.2 5,-0.3 0.856 109.4 53.6 -62.2 -34.6 26.0 8.5 7.8 9 8 A T H X>S+ 0 0 40 -4,-2.5 4,-3.0 2,-0.2 5,-0.8 0.927 106.6 52.9 -64.8 -44.4 26.9 10.7 10.7 10 9 A I H X>S+ 0 0 77 -4,-2.4 4,-2.0 3,-0.2 5,-0.6 0.951 114.5 41.2 -53.1 -53.2 25.3 13.6 8.9 11 10 A V H X5S+ 0 0 17 -4,-2.2 4,-1.3 3,-0.2 5,-0.4 0.968 122.5 37.7 -63.9 -51.0 22.1 11.7 8.5 12 11 A S H <5S+ 0 0 94 -4,-3.0 4,-0.2 1,-0.2 -3,-0.2 0.931 131.2 27.0 -69.1 -45.1 21.9 10.1 11.9 13 12 A Q H <5S+ 0 0 134 -4,-3.0 -3,-0.2 -5,-0.3 -1,-0.2 0.762 141.0 14.3 -89.7 -29.0 23.3 13.0 14.0 14 13 A Y H X S+ 0 0 97 -5,-0.4 4,-2.7 1,-0.2 -1,-0.2 0.907 116.9 50.7 -62.8 -41.5 16.6 16.1 10.9 17 16 A M H > S+ 0 0 120 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.931 112.8 45.3 -61.5 -44.8 18.3 19.3 11.9 18 17 A I H X S+ 0 0 76 -4,-3.0 4,-2.3 1,-0.2 -2,-0.2 0.939 113.1 49.3 -65.6 -45.6 19.6 19.9 8.3 19 18 A W H X S+ 0 0 21 -4,-2.7 4,-2.7 1,-0.2 -1,-0.2 0.900 109.1 53.8 -59.3 -42.8 16.3 19.0 6.7 20 19 A D H X S+ 0 0 73 -4,-2.7 4,-3.2 1,-0.2 -1,-0.2 0.914 111.5 45.3 -56.3 -41.4 14.6 21.4 9.1 21 20 A L H X S+ 0 0 111 -4,-2.0 4,-1.8 2,-0.2 -1,-0.2 0.835 110.2 52.9 -71.0 -36.3 16.9 24.1 8.0 22 21 A L H X S+ 0 0 99 -4,-2.3 4,-0.7 2,-0.2 -2,-0.2 0.955 114.8 43.5 -62.9 -50.8 16.5 23.3 4.3 23 22 A V H >< S+ 0 0 3 -4,-2.7 3,-1.0 1,-0.2 -2,-0.2 0.931 117.2 44.1 -59.6 -50.1 12.8 23.5 4.8 24 23 A S H 3< S+ 0 0 94 -4,-3.2 -1,-0.2 1,-0.3 -2,-0.2 0.727 105.1 64.7 -72.8 -20.7 12.9 26.7 7.0 25 24 A G H 3< S+ 0 0 46 -4,-1.8 -1,-0.3 -5,-0.2 -2,-0.2 0.693 76.5 104.9 -76.6 -17.9 15.5 28.3 4.6 26 25 A V << - 0 0 38 -3,-1.0 3,-0.1 -4,-0.7 31,-0.0 -0.418 60.1-155.3 -64.5 133.1 13.0 28.4 1.7 27 26 A R >> - 0 0 152 1,-0.2 4,-2.6 -2,-0.1 3,-0.6 -0.942 7.8-156.3-116.1 109.4 11.7 32.0 1.2 28 27 A P H 3> S+ 0 0 25 0, 0.0 4,-3.0 0, 0.0 5,-0.2 0.868 95.3 52.7 -50.5 -42.7 8.3 32.1 -0.5 29 28 A D H 3> S+ 0 0 75 1,-0.2 4,-2.0 2,-0.2 9,-0.2 0.888 111.4 44.0 -64.0 -36.0 9.0 35.6 -1.7 30 29 A Q H <> S+ 0 0 70 -3,-0.6 4,-2.4 2,-0.2 -1,-0.2 0.890 115.4 47.8 -72.2 -44.1 12.3 34.6 -3.3 31 30 A V H X S+ 0 0 55 -4,-2.6 4,-1.6 2,-0.2 -2,-0.2 0.953 114.1 48.0 -64.1 -46.3 10.8 31.5 -4.8 32 31 A b H <>S+ 0 0 0 -4,-3.0 5,-3.0 -5,-0.2 6,-1.0 0.838 109.4 53.2 -64.8 -34.1 7.8 33.5 -6.1 33 32 A S H ><5S+ 0 0 23 -4,-2.0 3,-1.8 4,-0.2 -1,-0.2 0.927 107.5 50.2 -63.4 -45.1 10.1 36.2 -7.5 34 33 A Q H 3<5S+ 0 0 151 -4,-2.4 -2,-0.2 1,-0.3 -1,-0.2 0.818 107.1 56.2 -63.2 -28.8 12.1 33.5 -9.4 35 34 A A T 3<5S- 0 0 62 -4,-1.6 -1,-0.3 -5,-0.1 -2,-0.2 0.451 117.9-117.5 -76.6 -5.2 8.7 32.3 -10.7 36 35 A G T < 5S+ 0 0 63 -3,-1.8 -3,-0.2 2,-0.2 -2,-0.1 0.679 90.4 104.1 83.4 15.5 8.1 35.8 -12.0 37 36 A L S > - 0 0 55 -6,-0.2 4,-1.9 1,-0.1 3,-0.9 -0.340 360.0-116.4 -63.1 149.9 -0.1 41.3 -7.4 44 66 A P H 3> S+ 0 0 112 0, 0.0 4,-2.2 0, 0.0 5,-0.2 0.853 115.9 52.5 -59.5 -34.4 -2.7 38.6 -6.4 45 67 A L H 3> S+ 0 0 111 2,-0.2 4,-2.2 1,-0.2 5,-0.1 0.738 104.5 58.2 -72.7 -22.4 -0.7 35.8 -7.9 46 68 A c H <> S+ 0 0 7 -3,-0.9 4,-2.6 2,-0.2 5,-0.2 0.958 109.2 42.9 -65.3 -52.4 2.2 37.0 -5.9 47 69 A T H X S+ 0 0 74 -4,-1.9 4,-2.2 1,-0.2 -2,-0.2 0.910 116.8 47.7 -60.1 -42.4 0.2 36.5 -2.7 48 70 A A H X S+ 0 0 44 -4,-2.2 4,-2.9 1,-0.2 -1,-0.2 0.908 111.0 51.6 -67.2 -39.5 -1.2 33.2 -3.9 49 71 A b H X S+ 0 0 20 -4,-2.2 4,-2.5 2,-0.2 -1,-0.2 0.912 109.8 48.3 -60.8 -47.9 2.2 32.0 -4.9 50 72 A E H X S+ 0 0 57 -4,-2.6 4,-2.8 2,-0.2 5,-0.2 0.920 111.6 50.3 -63.7 -38.9 3.7 32.8 -1.5 51 73 A M H X S+ 0 0 94 -4,-2.2 4,-2.2 1,-0.2 -2,-0.2 0.920 110.2 51.0 -59.4 -44.4 0.7 31.0 0.2 52 74 A A H X S+ 0 0 40 -4,-2.9 4,-2.0 2,-0.2 -2,-0.2 0.888 110.6 48.2 -60.5 -43.7 1.4 28.0 -2.0 53 75 A V H X S+ 0 0 8 -4,-2.5 4,-2.7 2,-0.2 -2,-0.2 0.911 109.5 52.5 -65.2 -45.5 5.1 28.0 -1.1 54 76 A V H X S+ 0 0 70 -4,-2.8 4,-1.9 1,-0.2 -1,-0.2 0.923 111.8 46.9 -54.3 -42.7 4.3 28.3 2.7 55 77 A W H X S+ 0 0 173 -4,-2.2 4,-2.1 2,-0.2 -2,-0.2 0.872 109.1 54.0 -69.1 -34.1 2.0 25.3 2.2 56 78 A M H X S+ 0 0 118 -4,-2.0 4,-2.0 2,-0.2 -2,-0.2 0.912 109.0 49.4 -59.7 -44.7 4.8 23.5 0.3 57 79 A Q H X S+ 0 0 25 -4,-2.7 4,-0.8 1,-0.2 -2,-0.2 0.841 108.3 53.0 -62.2 -37.2 7.1 24.1 3.2 58 80 A N H >< S+ 0 0 68 -4,-1.9 3,-0.7 2,-0.2 4,-0.4 0.887 107.2 51.4 -68.0 -37.4 4.5 22.8 5.6 59 81 A Q H >< S+ 0 0 97 -4,-2.1 3,-1.8 1,-0.2 6,-0.3 0.902 105.9 56.8 -60.0 -37.8 4.2 19.5 3.5 60 82 A L H 3< S+ 0 0 48 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.764 100.5 57.5 -71.5 -18.8 8.0 19.2 3.7 61 83 A K T << S+ 0 0 110 -4,-0.8 -1,-0.3 -3,-0.7 -2,-0.2 0.565 81.1 116.7 -78.2 -15.4 7.8 19.3 7.5 62 84 A Q S <> S- 0 0 95 -3,-1.8 4,-2.3 -4,-0.4 5,-0.2 -0.263 74.3-123.8 -63.0 144.3 5.5 16.3 7.5 63 85 A E H > S+ 0 0 95 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.925 109.2 50.7 -51.9 -54.2 6.9 13.1 9.2 64 86 A G H > S+ 0 0 51 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.885 112.4 46.8 -49.2 -45.9 6.5 10.9 6.2 65 87 A T H > S+ 0 0 29 -6,-0.3 4,-2.4 2,-0.2 -2,-0.2 0.952 113.8 46.4 -68.3 -49.6 8.3 13.4 3.9 66 88 A K H X S+ 0 0 20 -4,-2.3 4,-2.8 1,-0.2 5,-0.2 0.922 114.5 48.1 -52.2 -49.6 11.2 14.0 6.3 67 89 A E H X S+ 0 0 110 -4,-3.1 4,-2.4 1,-0.2 -1,-0.2 0.875 111.1 50.6 -67.8 -36.3 11.7 10.3 6.9 68 90 A K H X S+ 0 0 164 -4,-2.1 4,-2.6 -5,-0.3 -1,-0.2 0.908 112.7 47.1 -64.8 -41.5 11.6 9.5 3.1 69 91 A V H X S+ 0 0 43 -4,-2.4 4,-2.3 2,-0.2 -2,-0.2 0.949 113.4 46.3 -70.7 -47.2 14.2 12.2 2.5 70 92 A L H X S+ 0 0 28 -4,-2.8 4,-2.8 2,-0.2 -2,-0.2 0.891 113.5 49.5 -60.3 -40.3 16.5 11.0 5.3 71 93 A E H X S+ 0 0 90 -4,-2.4 4,-2.6 -5,-0.2 5,-0.2 0.925 109.7 52.1 -64.9 -45.7 16.2 7.4 4.2 72 94 A Y H X S+ 0 0 161 -4,-2.6 4,-1.6 2,-0.2 -2,-0.2 0.930 113.5 43.8 -52.2 -49.8 16.9 8.4 0.6 73 95 A V H X S+ 0 0 49 -4,-2.3 4,-2.6 1,-0.2 -2,-0.2 0.920 112.4 52.6 -63.5 -44.7 20.1 10.2 1.7 74 96 A N H X S+ 0 0 35 -4,-2.8 4,-1.8 1,-0.2 -1,-0.2 0.900 105.7 52.9 -60.1 -43.5 21.1 7.4 4.0 75 97 A Q H < S+ 0 0 88 -4,-2.6 4,-0.3 1,-0.2 -1,-0.2 0.866 111.0 49.4 -60.3 -35.9 20.8 4.8 1.2 76 98 A L H >< S+ 0 0 82 -4,-1.6 3,-1.5 -5,-0.2 4,-0.3 0.889 104.0 57.4 -68.9 -39.5 23.1 7.1 -0.9 77 99 A a H >< S+ 0 0 0 -4,-2.6 3,-1.7 1,-0.3 -2,-0.2 0.898 103.4 55.9 -51.8 -43.0 25.6 7.4 2.0 78 100 A E T 3< S+ 0 0 97 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.614 101.4 57.9 -68.8 -13.3 25.7 3.5 1.8 79 101 A K T < S+ 0 0 145 -3,-1.5 -1,-0.3 -4,-0.3 -2,-0.2 0.399 79.2 106.2 -93.7 -2.8 26.7 3.8 -1.8 80 102 A I < 0 0 51 -3,-1.7 -76,-0.1 -4,-0.3 -75,-0.0 -0.711 360.0 360.0 -77.7 118.9 29.8 5.9 -1.1 81 103 A P 0 0 155 0, 0.0 -1,-0.1 0, 0.0 -79,-0.1 0.472 360.0 360.0 -83.0 360.0 32.9 3.7 -1.6