==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 21-JUL-07 2RLK . COMPND 2 MOLECULE: PEPTIDE YY; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR A.NEUMOIN,J.MARES,M.LERCH-BADER,R.BADER,O.ZERBE . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3946.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 257 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 152.3 16.8 -6.3 -11.6 2 2 A P - 0 0 96 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.571 360.0-142.0 -77.6 -13.3 14.6 -7.2 -8.6 3 3 A A + 0 0 54 1,-0.2 0, 0.0 0, 0.0 0, 0.0 0.535 64.9 111.0 63.6 17.0 11.6 -6.2 -10.6 4 4 A K S S- 0 0 95 23,-0.0 2,-0.3 24,-0.0 -1,-0.2 -0.916 76.9-108.1-121.1 139.8 10.1 -4.7 -7.4 5 5 A P - 0 0 43 0, 0.0 22,-0.0 0, 0.0 2,-0.0 -0.508 42.5-114.4 -68.9 124.8 9.4 -1.0 -6.5 6 6 A E - 0 0 160 -2,-0.3 18,-0.0 1,-0.1 0, 0.0 -0.364 43.3 -85.2 -62.5 145.7 12.0 0.1 -3.9 7 7 A A - 0 0 68 1,-0.1 -1,-0.1 -3,-0.0 14,-0.0 -0.154 51.8-111.6 -54.4 141.3 10.4 1.0 -0.5 8 8 A P + 0 0 29 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.130 65.3 99.8 -77.9 176.6 9.2 4.6 -0.3 9 9 A G > + 0 0 34 1,-0.1 3,-0.9 4,-0.0 4,-0.0 -0.942 12.7 130.7 149.6-132.2 10.7 7.4 1.8 10 10 A E T 3 S- 0 0 193 -2,-0.3 -1,-0.1 1,-0.3 0, 0.0 0.881 116.0 -50.9 47.8 40.6 13.0 10.2 0.7 11 11 A D T 3 S+ 0 0 172 1,-0.2 -1,-0.3 -3,-0.1 2,-0.1 0.814 92.4 176.9 64.8 35.5 10.5 12.5 2.5 12 12 A A < - 0 0 46 -3,-0.9 -1,-0.2 1,-0.1 -2,-0.1 -0.395 33.6 -99.3 -68.9 142.0 7.5 11.0 0.6 13 13 A S > - 0 0 65 -2,-0.1 4,-2.9 1,-0.1 3,-0.2 -0.352 26.7-121.3 -71.3 147.4 3.9 12.2 1.5 14 14 A P H > S+ 0 0 106 0, 0.0 4,-1.7 0, 0.0 -1,-0.1 0.804 109.1 47.6 -71.5 -37.8 1.8 10.1 3.8 15 15 A E H > S+ 0 0 129 2,-0.2 4,-1.6 1,-0.2 5,-0.1 0.901 115.2 46.2 -63.8 -47.4 -1.2 9.5 1.5 16 16 A E H > S+ 0 0 96 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.925 106.9 60.8 -60.4 -44.7 1.2 8.4 -1.4 17 17 A L H X S+ 0 0 31 -4,-2.9 4,-2.7 1,-0.2 -2,-0.2 0.883 103.9 49.6 -45.5 -51.6 3.1 6.3 1.1 18 18 A S H X S+ 0 0 76 -4,-1.7 4,-2.0 2,-0.2 -1,-0.2 0.941 114.2 42.0 -55.8 -58.5 -0.2 4.3 1.8 19 19 A R H X S+ 0 0 124 -4,-1.6 4,-1.4 1,-0.2 -2,-0.2 0.934 117.1 48.7 -56.6 -50.0 -1.0 3.6 -1.9 20 20 A Y H X S+ 0 0 88 -4,-3.1 4,-1.2 1,-0.2 -2,-0.2 0.897 108.5 53.3 -59.0 -46.2 2.7 2.9 -2.7 21 21 A Y H >X S+ 0 0 124 -4,-2.7 4,-1.3 -5,-0.3 3,-0.6 0.901 103.9 56.1 -57.0 -45.1 3.1 0.5 0.3 22 22 A A H 3X S+ 0 0 52 -4,-2.0 4,-2.0 1,-0.2 -1,-0.2 0.898 103.6 55.8 -54.4 -40.8 0.1 -1.6 -0.9 23 23 A S H 3X S+ 0 0 58 -4,-1.4 4,-2.4 2,-0.2 -1,-0.2 0.817 99.4 60.7 -61.8 -34.8 1.9 -2.1 -4.3 24 24 A L H X S+ 0 0 79 -4,-2.4 3,-1.8 1,-0.2 4,-0.7 0.940 112.5 57.6 -60.9 -47.4 4.2 -7.6 -6.4 28 28 A L H >< S+ 0 0 94 -4,-2.3 3,-1.3 1,-0.3 -2,-0.2 0.845 96.1 65.4 -52.3 -36.0 5.5 -9.8 -3.5 29 29 A N H >< S+ 0 0 107 -4,-2.2 3,-1.2 1,-0.3 -1,-0.3 0.801 94.8 57.8 -57.1 -31.6 2.2 -11.8 -3.8 30 30 A L H << S+ 0 0 127 -3,-1.8 -1,-0.3 -4,-0.6 3,-0.2 0.776 99.7 58.8 -70.2 -23.6 3.3 -12.9 -7.3 31 31 A V T << S+ 0 0 103 -3,-1.3 -1,-0.2 -4,-0.7 2,-0.2 0.362 99.9 62.7 -85.7 4.6 6.5 -14.4 -5.8 32 32 A T < + 0 0 70 -3,-1.2 -1,-0.2 -4,-0.2 2,-0.1 -0.622 57.9 128.2-134.4 72.7 4.3 -16.7 -3.5 33 33 A R - 0 0 189 -3,-0.2 3,-0.1 -2,-0.2 -1,-0.1 -0.496 35.7-176.6-127.8 60.0 2.3 -19.1 -5.8 34 34 A Q - 0 0 134 1,-0.1 2,-1.2 -2,-0.1 -2,-0.1 -0.115 42.8 -86.8 -54.9 153.9 3.0 -22.6 -4.3 35 35 A R 0 0 231 1,-0.2 -1,-0.1 0, 0.0 -2,-0.0 -0.544 360.0 360.0 -73.4 93.8 1.5 -25.6 -6.1 36 36 A Y 0 0 250 -2,-1.2 -1,-0.2 -3,-0.1 -2,-0.0 0.901 360.0 360.0 -85.5 360.0 -2.0 -26.0 -4.6