==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 06-DEC-07 2RN5 . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR W.BOCIAN,L.KOZERSKI . 53 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3847.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 66.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 9.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 26.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 34 0, 0.0 3,-2.1 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 146.5 -3.3 6.2 0.2 2 2 A I T >> + 0 0 7 1,-0.3 4,-2.6 2,-0.2 3,-1.9 0.670 360.0 74.4 -59.9 -20.3 -0.1 4.3 -1.1 3 3 A V H 3> S+ 0 0 14 1,-0.3 4,-2.0 2,-0.2 5,-0.3 0.896 90.2 60.6 -52.1 -41.8 -0.0 6.3 -4.4 4 4 A E H <4 S+ 0 0 116 -3,-2.1 -1,-0.3 2,-0.2 -2,-0.2 0.513 115.6 32.9 -70.7 -5.2 1.3 9.2 -2.2 5 5 A Q H X> S+ 0 0 70 -3,-1.9 4,-2.9 -4,-0.2 3,-0.9 0.727 121.0 43.4-104.3 -63.1 4.3 6.9 -1.3 6 6 A a H 3< S+ 0 0 0 -4,-2.6 22,-2.1 1,-0.2 5,-0.2 0.765 111.8 53.2 -59.1 -33.5 5.0 4.8 -4.4 7 7 A b T 3< S+ 0 0 53 -4,-2.0 -1,-0.2 -5,-0.3 -3,-0.1 0.775 127.1 17.7 -77.8 -26.9 4.6 7.6 -7.0 8 8 A T T <4 S+ 0 0 109 -3,-0.9 -2,-0.2 -5,-0.3 2,-0.1 0.693 132.4 26.5-116.2 -35.0 7.2 10.1 -5.4 9 9 A S S < S- 0 0 66 -4,-2.9 19,-0.3 19,-0.1 2,-0.3 -0.384 96.3 -73.4-113.9-169.0 9.2 7.8 -3.0 10 10 A I + 0 0 63 -2,-0.1 2,-0.3 17,-0.1 17,-0.2 -0.709 45.4 172.8 -92.4 145.5 10.1 4.1 -3.0 11 11 A a E -A 26 0A 1 15,-2.6 15,-2.3 -2,-0.3 2,-0.3 -0.870 11.2-152.3-141.6 176.8 7.7 1.2 -2.1 12 12 A S E >> -A 25 0A 23 -2,-0.3 4,-1.9 13,-0.2 3,-1.5 -0.952 35.3 -95.1-153.1 164.0 7.8 -2.7 -2.1 13 13 A L H 3> S+ 0 0 48 11,-1.6 4,-2.5 -2,-0.3 5,-0.1 0.844 119.7 58.6 -57.2 -37.1 5.8 -5.9 -2.4 14 14 A Y H 34 S+ 0 0 187 1,-0.2 4,-0.4 10,-0.2 -1,-0.3 0.777 109.9 44.4 -62.1 -28.4 5.5 -6.3 1.4 15 15 A Q H <4 S+ 0 0 71 -3,-1.5 3,-0.4 2,-0.2 -2,-0.2 0.790 110.6 53.9 -87.5 -29.8 3.8 -2.8 1.5 16 16 A L H >< S+ 0 0 0 -4,-1.9 3,-1.9 1,-0.2 4,-0.3 0.880 98.5 64.8 -67.1 -38.2 1.6 -3.7 -1.5 17 17 A E G >< S+ 0 0 119 -4,-2.5 3,-1.3 1,-0.3 -1,-0.2 0.785 88.5 68.9 -52.8 -31.6 0.4 -6.8 0.4 18 18 A N G 3 S+ 0 0 117 -3,-0.4 -1,-0.3 -4,-0.4 -2,-0.2 0.701 102.1 45.6 -63.0 -19.3 -1.2 -4.5 3.0 19 19 A Y G < S+ 0 0 50 -3,-1.9 28,-1.7 -4,-0.2 29,-0.8 0.325 87.0 119.9-107.6 2.9 -3.8 -3.4 0.3 20 20 A c B < B 46 0B 31 -3,-1.3 26,-0.3 -4,-0.3 25,-0.1 -0.457 360.0 360.0 -72.0 141.7 -4.7 -6.9 -1.0 21 21 A N 0 0 111 24,-2.4 25,-0.2 -2,-0.2 -1,-0.1 0.819 360.0 360.0 -76.3 360.0 -8.2 -8.4 -0.8 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 123 0, 0.0 2,-1.9 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 177.9 10.8 -4.5 -9.7 24 2 B V + 0 0 93 2,-0.0 -11,-1.6 -12,-0.0 2,-0.3 -0.306 360.0 26.6 79.3 -51.3 10.3 -5.8 -6.1 25 3 B N E S+A 12 0A 104 -2,-1.9 2,-0.3 -13,-0.2 -13,-0.2 -0.940 97.6 100.0-141.3 111.2 11.5 -2.4 -4.5 26 4 B Q E S-A 11 0A 82 -15,-2.3 -15,-2.6 -2,-0.3 2,-0.3 -0.958 74.2 -67.6-170.9 174.7 11.0 0.7 -6.7 27 5 B H - 0 0 101 -2,-0.3 2,-0.3 -17,-0.2 -20,-0.2 -0.756 51.5-178.4 -81.4 142.2 8.9 3.8 -7.6 28 6 B L + 0 0 17 -22,-2.1 2,-0.3 -2,-0.3 -19,-0.1 -0.992 5.9 171.8-145.1 136.0 5.4 2.8 -9.0 29 7 B b > - 0 0 46 -2,-0.3 3,-1.4 -22,-0.1 4,-0.1 -1.000 48.7 -28.9-149.7 145.5 2.5 5.0 -10.2 30 8 B G T 3> S+ 0 0 43 -2,-0.3 4,-2.5 1,-0.3 3,-0.3 -0.271 129.4 7.2 60.0-126.7 -0.9 4.6 -12.0 31 9 B S H 3> S+ 0 0 73 1,-0.2 4,-2.9 2,-0.2 -1,-0.3 0.874 132.6 55.5 -52.3 -40.8 -1.1 1.6 -14.3 32 10 B H H <> S+ 0 0 122 -3,-1.4 4,-2.2 2,-0.2 -1,-0.2 0.904 110.8 43.9 -62.9 -42.3 2.3 0.3 -13.0 33 11 B L H > S+ 0 0 3 -3,-0.3 4,-2.5 2,-0.2 -2,-0.2 0.902 113.9 50.7 -69.0 -41.4 1.1 0.4 -9.3 34 12 B V H X S+ 0 0 54 -4,-2.5 4,-2.3 2,-0.2 -2,-0.2 0.910 112.9 45.8 -62.2 -44.7 -2.3 -1.2 -10.3 35 13 B E H X S+ 0 0 121 -4,-2.9 4,-2.3 2,-0.2 -2,-0.2 0.902 111.5 52.0 -66.6 -40.1 -0.4 -4.0 -12.2 36 14 B A H X S+ 0 0 2 -4,-2.2 4,-2.6 2,-0.2 -2,-0.2 0.920 109.3 50.4 -62.5 -41.8 2.1 -4.5 -9.3 37 15 B L H X S+ 0 0 2 -4,-2.5 4,-3.1 2,-0.2 5,-0.4 0.953 111.1 48.4 -59.1 -47.2 -1.0 -4.8 -6.9 38 16 B Y H X S+ 0 0 128 -4,-2.3 4,-1.3 1,-0.2 -2,-0.2 0.862 112.4 49.2 -62.9 -33.9 -2.5 -7.5 -9.3 39 17 B L H < S+ 0 0 125 -4,-2.3 -2,-0.2 2,-0.2 -1,-0.2 0.908 118.2 39.5 -67.2 -42.4 1.0 -9.3 -9.4 40 18 B V H < S+ 0 0 38 -4,-2.6 -2,-0.2 1,-0.2 -3,-0.2 0.914 125.2 35.1 -73.5 -46.7 1.2 -9.2 -5.5 41 19 B c H >< S- 0 0 16 -4,-3.1 3,-0.7 1,-0.2 -3,-0.2 0.634 95.2-156.0 -85.4 -18.6 -2.4 -10.0 -4.7 42 20 B G G >< - 0 0 36 -4,-1.3 3,-1.7 -5,-0.4 -1,-0.2 -0.313 59.6 -22.4 70.6-155.2 -3.2 -12.4 -7.6 43 21 B E G 3 S+ 0 0 212 1,-0.3 -1,-0.2 -4,-0.1 -4,-0.1 0.705 128.9 72.9 -61.7 -21.1 -6.7 -13.0 -9.0 44 22 B R G < S- 0 0 169 -3,-0.7 -1,-0.3 1,-0.1 -2,-0.2 0.757 89.3-163.5 -62.7 -28.2 -8.2 -11.8 -5.6 45 23 B G < - 0 0 8 -3,-1.7 -24,-2.4 -7,-0.2 2,-0.3 -0.159 19.7 -65.5 71.9-166.5 -7.2 -8.2 -6.5 46 24 B F B -B 20 0B 44 -26,-0.3 -26,-0.2 -25,-0.2 -29,-0.0 -0.902 17.9-147.1-121.6 148.4 -6.9 -5.2 -4.1 47 25 B F + 0 0 119 -28,-1.7 -27,-0.1 -2,-0.3 -1,-0.1 0.575 68.6 109.8 -85.8 -13.8 -9.5 -3.2 -2.0 48 26 B Y - 0 0 10 -29,-0.8 -2,-0.1 3,-0.0 -27,-0.0 -0.168 52.2-158.0 -64.0 154.4 -7.6 0.1 -2.5 49 27 B T > - 0 0 42 3,-0.1 3,-0.9 0, 0.0 2,-0.5 -0.994 41.7 -93.0-132.6 134.7 -8.6 3.1 -4.7 50 28 B P T 3 S- 0 0 82 0, 0.0 3,-0.1 0, 0.0 -16,-0.0 -0.291 90.4 -44.9 -63.1 101.4 -5.9 5.6 -5.9 51 29 B K T 3 S+ 0 0 120 -2,-0.5 2,-0.8 1,-0.2 -3,-0.0 0.637 100.0 136.4 40.8 29.8 -5.8 8.3 -3.2 52 30 B T S < S- 0 0 88 -3,-0.9 2,-2.1 1,-0.1 -1,-0.2 -0.883 94.5 -45.6-100.1 95.9 -9.7 8.4 -3.1 53 31 B K 0 0 193 -2,-0.8 -1,-0.1 1,-0.1 -2,-0.0 -0.228 360.0 360.0 70.6 -43.8 -10.5 8.5 0.7 54 32 B R 0 0 141 -2,-2.1 -1,-0.1 -5,-0.2 -3,-0.1 -0.543 360.0 360.0 -68.3 360.0 -7.9 5.7 1.2