==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 07-JAN-09 2RQ2 . COMPND 2 MOLECULE: BIG DEFENSIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.KOUNO,M.MIZUGUCHI,T.AIZAWA,H.SHINODA,M.DEMURA,S.KAWABATA, . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3000.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 134 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-176.2 -14.3 15.8 -1.3 2 2 A A + 0 0 103 2,-0.1 4,-0.0 1,-0.0 0, 0.0 -0.276 360.0 91.4-130.2 50.3 -12.7 13.4 -3.8 3 3 A I S S- 0 0 138 0, 0.0 3,-0.1 0, 0.0 -1,-0.0 0.802 110.1 -23.0-106.8 -67.6 -10.9 15.7 -6.3 4 4 A Y S > S+ 0 0 197 1,-0.1 3,-0.6 3,-0.0 -2,-0.1 0.091 102.8 105.8-135.3 23.0 -7.2 16.2 -5.3 5 5 A I T 3 S+ 0 0 126 1,-0.2 -1,-0.1 2,-0.1 3,-0.0 0.057 85.2 44.8 -92.1 27.2 -7.4 15.5 -1.5 6 6 A G T 3 + 0 0 57 -3,-0.1 -1,-0.2 -4,-0.0 -4,-0.0 -0.082 60.9 133.8-160.7 45.5 -5.7 12.2 -2.0 7 7 A A < + 0 0 85 -3,-0.6 2,-0.2 2,-0.0 -2,-0.1 0.172 59.6 84.3 -87.5 22.0 -2.7 12.7 -4.4 8 8 A T - 0 0 111 1,-0.1 -3,-0.0 2,-0.0 0, 0.0 -0.614 49.8-175.4-114.9 177.7 -0.5 10.6 -2.0 9 9 A V - 0 0 135 -2,-0.2 -1,-0.1 0, 0.0 -2,-0.0 0.505 39.3-116.2-141.1 -43.4 0.1 6.9 -1.6 10 10 A G > - 0 0 19 3,-0.1 4,-0.7 2,-0.0 5,-0.1 0.702 15.9-157.0 96.8 99.5 2.4 6.2 1.4 11 11 A P H > S+ 0 0 109 0, 0.0 4,-2.0 0, 0.0 5,-0.2 0.910 91.7 44.2 -73.4 -44.7 5.8 4.6 0.7 12 12 A S H > S+ 0 0 86 2,-0.2 4,-1.8 1,-0.2 3,-0.4 0.999 113.8 45.4 -64.8 -71.2 6.3 3.2 4.3 13 13 A V H > S+ 0 0 107 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.829 111.7 60.0 -42.6 -31.0 2.8 1.8 4.9 14 14 A W H X S+ 0 0 148 -4,-0.7 4,-1.7 1,-0.2 -1,-0.2 0.987 101.4 48.0 -64.8 -56.7 3.2 0.4 1.4 15 15 A A H X S+ 0 0 56 -4,-2.0 4,-2.3 -3,-0.4 -1,-0.2 0.838 110.4 56.9 -54.3 -28.5 6.3 -1.7 2.1 16 16 A Y H X S+ 0 0 169 -4,-1.8 4,-2.0 1,-0.2 -1,-0.2 0.953 105.2 47.3 -69.5 -47.3 4.4 -3.0 5.2 17 17 A L H X S+ 0 0 81 -4,-2.0 4,-1.7 -3,-0.2 -1,-0.2 0.778 112.9 53.5 -65.7 -21.7 1.4 -4.3 3.2 18 18 A V H X S+ 0 0 69 -4,-1.7 4,-1.6 -5,-0.2 -2,-0.2 0.954 107.6 46.0 -78.2 -51.5 4.0 -5.9 0.8 19 19 A A H X S+ 0 0 68 -4,-2.3 4,-1.9 2,-0.2 -2,-0.2 0.911 116.1 48.0 -58.7 -40.0 6.0 -7.9 3.5 20 20 A L H X S+ 0 0 102 -4,-2.0 4,-1.7 1,-0.2 5,-0.2 0.975 111.5 47.1 -66.8 -52.9 2.7 -9.1 5.1 21 21 A V H X S+ 0 0 86 -4,-1.7 4,-1.4 -5,-0.2 -1,-0.2 0.774 109.3 59.8 -60.9 -21.5 1.1 -10.2 1.8 22 22 A G H X S+ 0 0 28 -4,-1.6 4,-1.4 2,-0.2 5,-0.2 0.973 101.6 48.6 -72.3 -53.6 4.4 -11.9 1.0 23 23 A A H X S+ 0 0 59 -4,-1.9 4,-1.1 1,-0.2 3,-0.3 0.906 113.8 48.7 -53.7 -40.3 4.4 -14.2 4.0 24 24 A A H X S+ 0 0 61 -4,-1.7 4,-1.6 1,-0.2 -1,-0.2 0.869 108.4 53.3 -69.7 -33.5 0.8 -15.2 3.3 25 25 A A H < S+ 0 0 66 -4,-1.4 4,-0.3 -3,-0.2 -1,-0.2 0.719 112.2 45.9 -74.3 -17.2 1.6 -15.9 -0.4 26 26 A V H < S+ 0 0 108 -4,-1.4 -1,-0.2 -3,-0.3 -2,-0.2 0.619 112.2 49.9 -98.5 -14.4 4.5 -18.2 0.7 27 27 A T H < S+ 0 0 119 -4,-1.1 -2,-0.2 -5,-0.2 -3,-0.1 0.743 106.0 54.4 -94.2 -25.6 2.4 -20.1 3.3 28 28 A A S < S+ 0 0 86 -4,-1.6 2,-0.7 -5,-0.2 -2,-0.1 0.775 87.5 91.0 -78.9 -23.9 -0.6 -20.8 1.1 29 29 A A 0 0 62 -4,-0.3 -1,-0.0 -5,-0.2 -4,-0.0 -0.590 360.0 360.0 -74.7 111.7 1.6 -22.5 -1.6 30 30 A N 0 0 225 -2,-0.7 -1,-0.2 0, 0.0 -4,-0.0 0.769 360.0 360.0 -45.7 360.0 1.8 -26.2 -0.7