==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=16-SEP-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 07-JAN-04 1S1O . COMPND 2 MOLECULE: BOC-L-NLE-(D-NLE-L-NLE)5-D-NLE(METHYL)-L-NLE-D-NL . SOURCE 2 SYNTHETIC: YES; . AUTHOR E.NAVARRO,E.FENNUDE,B.CELDA . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3218.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 23 76.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 119 0, 0.0 30,-2.6 0, 0.0 26,-0.2 0.000 360.0 360.0 360.0 161.2 33.0 -0.3 9.3 2 2 A X E +AB 26 30A 90 24,-3.2 24,-2.2 1,-0.3 2,-0.3 -0.425 360.0 52.7 139.4 -55.7 30.6 2.0 7.3 3 3 A X E S+AB 25 29A 96 26,-2.9 26,-2.9 22,-0.3 2,-0.5 -0.735 82.8 49.0-110.7 154.7 30.2 4.8 9.9 4 4 A X E S-AB 24 28A 71 20,-2.5 20,-3.2 -2,-0.3 2,-0.3 -0.927 95.1 -10.5 126.3-104.3 32.7 7.0 11.9 5 5 A X E S+AB 23 27A 100 22,-2.9 22,-2.7 -2,-0.5 18,-0.2 -0.963 91.4 64.0-140.4 153.2 35.6 8.7 10.1 6 6 A X E S+AB 22 26A 119 16,-3.2 16,-2.1 -2,-0.3 2,-0.2 -0.524 103.4 34.7 136.0 -57.3 37.5 8.8 6.7 7 7 A X E S+AB 21 25A 75 18,-2.7 18,-2.8 14,-0.3 2,-0.4 -0.751 87.3 56.4-120.2 164.9 34.6 10.1 4.5 8 8 A X E S+AB 20 24A 53 12,-2.3 12,-3.2 -2,-0.2 2,-0.3 -0.931 92.5 17.7 116.8-138.2 31.7 12.5 5.1 9 9 A X E S+AB 19 23A 98 14,-2.5 14,-2.8 -2,-0.4 10,-0.2 -0.573 97.8 65.1 -79.4 128.2 32.0 16.2 6.2 10 10 A X E S+AB 18 22A 94 8,-2.9 8,-2.2 -2,-0.3 2,-0.3 -0.530 99.6 7.9 168.4 -84.7 35.4 17.9 5.9 11 11 A X E S+ B 0 21A 110 10,-3.1 10,-2.4 6,-0.3 2,-0.4 -0.887 96.0 49.5-124.3 149.8 36.8 18.4 2.4 12 12 A X E > S+ B 0 20A 108 -2,-0.3 3,-2.9 8,-0.2 8,-0.3 -0.981 85.2 44.1 128.5-140.1 35.0 17.8 -1.1 13 13 A X E 3 S+ B 0 19A 128 6,-2.8 6,-2.6 -2,-0.4 7,-0.0 -0.318 117.2 37.7 -55.1 109.7 31.7 18.9 -2.5 14 14 A X T 3 0 0 155 4,-0.3 -1,-0.3 -2,-0.2 4,-0.2 -0.286 360.0 360.0 135.9 -42.3 31.5 22.5 -1.5 15 15 A X < 0 0 176 -3,-2.9 3,-0.2 4,-0.1 -2,-0.1 0.776 360.0 360.0 42.1 360.0 35.2 23.3 -2.0 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 133 0, 0.0 -6,-0.3 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 159.7 35.8 22.5 2.7 18 2 B X E -A 10 0A 85 -8,-2.2 -8,-2.9 -4,-0.2 2,-0.5 -0.983 360.0 -22.6 148.1-157.0 32.6 20.4 2.2 19 3 B X E S+AB 9 13A 88 -6,-2.6 -6,-2.8 -2,-0.3 -10,-0.2 -0.797 95.8 59.9-100.0 124.0 31.4 16.8 1.7 20 4 B X E S+AB 8 12A 93 -12,-3.2 -12,-2.3 -2,-0.5 2,-0.4 -0.481 97.3 32.9 169.0 -82.5 33.7 13.9 0.6 21 5 B X E S+AB 7 11A 98 -10,-2.4 -10,-3.1 -14,-0.3 2,-0.3 -0.823 96.3 53.4-101.8 136.4 36.7 13.3 2.9 22 6 B X E S-AB 6 10A 89 -16,-2.1 -16,-3.2 -2,-0.4 2,-0.3 -0.976 89.2 -9.9 146.8-133.0 36.4 13.8 6.6 23 7 B X E S+AB 5 9A 75 -14,-2.8 -14,-2.5 -2,-0.3 -18,-0.3 -0.842 95.5 54.2-115.5 147.2 34.0 12.6 9.4 24 8 B X E S+AB 4 8A 90 -20,-3.2 -20,-2.5 -2,-0.3 2,-0.3 -0.467 101.4 41.7 135.3 -55.8 30.7 10.7 9.2 25 9 B X E S+AB 3 7A 72 -18,-2.8 -18,-2.7 -22,-0.3 2,-0.5 -0.779 84.9 44.5-122.4 160.0 31.5 7.6 7.2 26 10 B X E S+AB 2 6A 77 -24,-2.2 -24,-3.2 -2,-0.3 -20,-0.2 -0.949 94.9 18.3 116.4-125.3 34.4 5.1 6.9 27 11 B X E S+ B 0 5A 105 -22,-2.7 -22,-2.9 -2,-0.5 2,-0.1 -0.530 97.0 59.1 -85.6 150.6 36.2 3.4 9.8 28 12 B X E S+ B 0 4A 170 -24,-0.2 2,-0.3 -2,-0.2 -24,-0.2 -0.495 101.1 8.0 135.2 -69.2 34.7 3.3 13.4 29 13 B X E S+ B 0 3A 110 -26,-2.9 -26,-2.9 -3,-0.2 2,-0.4 -0.942 84.8 60.9-143.3 162.6 31.3 1.5 13.4 30 14 B X E B 0 2A 149 -2,-0.3 -28,-0.2 -28,-0.2 -3,-0.0 -0.972 360.0 360.0 126.8-133.1 29.0 -0.6 11.1 31 15 B X 0 0 192 -30,-2.6 -2,-0.0 -2,-0.4 -29,-0.0 -0.441 360.0 360.0 -64.1 360.0 29.7 -3.9 9.4