==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 02-FEB-04 1S8K . COMPND 2 MOLECULE: TOXIN BMKK4; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR N.ZHANG,X.CHEN,M.LI,C.CAO,Y.WANG,G.HU,H.WU . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2644.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 186 0, 0.0 2,-0.5 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 87.8 -4.1 8.3 10.0 2 2 A T - 0 0 108 1,-0.1 22,-0.2 22,-0.0 21,-0.1 -0.915 360.0-172.1-122.4 99.5 -2.0 7.4 6.9 3 3 A Q S S+ 0 0 135 20,-2.7 2,-0.3 -2,-0.5 21,-0.2 0.781 79.7 23.4 -55.8 -30.5 -0.1 4.1 7.0 4 4 A a - 0 0 6 1,-0.1 3,-0.1 -3,-0.1 19,-0.1 -0.927 53.4-157.3-136.6 159.4 1.6 5.2 3.8 5 5 A Q S S- 0 0 143 1,-0.4 2,-0.3 -2,-0.3 -1,-0.1 0.664 83.2 -9.0 -99.1 -37.2 2.4 8.3 1.8 6 6 A S S >> S- 0 0 58 1,-0.1 3,-2.3 15,-0.0 4,-0.8 -0.970 82.8 -82.8-160.2 164.7 2.7 6.6 -1.6 7 7 A V H 3> S+ 0 0 67 1,-0.3 4,-2.5 -2,-0.3 3,-0.3 0.830 118.9 74.8 -47.7 -37.8 2.8 3.2 -3.3 8 8 A R H 3> S+ 0 0 117 2,-0.2 4,-1.6 1,-0.2 -1,-0.3 0.825 92.0 53.5 -29.1 -54.0 6.5 3.2 -2.4 9 9 A D H <> S+ 0 0 28 -3,-2.3 4,-1.6 1,-0.2 -1,-0.2 0.937 112.2 42.6 -61.5 -47.8 5.5 2.5 1.2 10 10 A b H X S+ 0 0 0 -4,-0.8 4,-2.9 -3,-0.3 -1,-0.2 0.841 104.5 66.3 -66.8 -32.7 3.4 -0.5 0.1 11 11 A Q H < S+ 0 0 121 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.888 107.4 40.4 -61.0 -38.1 6.2 -1.7 -2.3 12 12 A Q H < S+ 0 0 166 -4,-1.6 -1,-0.2 -3,-0.2 -2,-0.2 0.855 119.6 47.8 -71.2 -35.4 8.5 -2.4 0.7 13 13 A Y H < S+ 0 0 178 -4,-1.6 2,-0.3 -5,-0.2 -2,-0.2 0.832 123.4 20.1 -67.7 -38.7 5.5 -3.8 2.6 14 14 A c < - 0 0 6 -4,-2.9 -1,-0.2 1,-0.1 16,-0.1 -0.989 64.3-134.2-143.3 138.5 4.2 -6.1 -0.2 15 15 A L S S+ 0 0 175 -2,-0.3 -1,-0.1 1,-0.3 15,-0.1 0.893 106.7 23.4 -63.7 -41.8 5.6 -7.6 -3.4 16 16 A T S S- 0 0 79 13,-0.2 12,-2.2 -3,-0.1 13,-0.7 -0.690 81.5-174.4-129.3 78.8 2.5 -6.6 -5.4 17 17 A P E -A 27 0A 18 0, 0.0 10,-0.3 0, 0.0 3,-0.1 -0.248 19.4-153.6 -65.4 159.4 0.6 -3.7 -3.8 18 18 A D E - 0 0 72 8,-2.8 2,-0.3 1,-0.3 9,-0.2 0.843 66.9 -36.9 -92.4 -61.8 -2.8 -2.5 -5.1 19 19 A R E -A 26 0A 113 7,-1.4 7,-2.6 5,-0.1 2,-0.8 -0.973 36.9-121.5-158.0 148.7 -2.5 1.1 -3.9 20 20 A a E S+A 25 0A 30 -2,-0.3 2,-0.3 5,-0.3 -13,-0.2 -0.890 71.9 130.8 -79.7 109.7 -1.4 3.5 -1.2 21 21 A S E > +A 24 0A 41 -2,-0.8 3,-2.4 3,-0.8 5,-0.1 -0.964 47.7 27.8-161.1 157.4 -5.0 4.8 -0.8 22 22 A Y T 3 S- 0 0 209 1,-0.3 3,-0.1 -2,-0.3 -1,-0.0 0.808 122.8 -74.1 51.6 32.9 -7.5 5.4 2.0 23 23 A G T 3 S+ 0 0 16 -21,-0.1 -20,-2.7 1,-0.1 2,-0.3 0.745 121.0 92.9 52.7 28.4 -4.5 6.0 4.3 24 24 A T E < S-A 21 0A 58 -3,-2.4 2,-0.9 -22,-0.2 -3,-0.8 -0.930 83.4-120.8-152.9 115.0 -3.9 2.2 4.3 25 25 A b E -A 20 0A 17 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.3 -0.485 30.2-149.9 -72.9 103.5 -1.6 0.5 1.8 26 26 A Y E -A 19 0A 85 -7,-2.6 -8,-2.8 -2,-0.9 -7,-1.4 -0.589 6.3-151.4 -69.6 132.7 -3.9 -1.9 -0.1 27 27 A c E -A 17 0A 36 -10,-0.3 3,-0.4 -2,-0.3 -12,-0.0 -0.900 10.6-142.3-112.5 140.4 -2.1 -5.1 -1.4 28 28 A K S S+ 0 0 114 -12,-2.2 2,-0.2 -2,-0.4 -1,-0.1 0.819 92.1 2.9 -74.9 -34.4 -3.4 -6.9 -4.5 29 29 A T 0 0 122 -13,-0.7 -1,-0.3 0, 0.0 -13,-0.2 -0.650 360.0 360.0-153.3 88.2 -2.7 -10.4 -3.3 30 30 A T 0 0 140 -3,-0.4 -3,-0.1 -2,-0.2 -16,-0.0 -0.963 360.0 360.0-155.4 360.0 -1.4 -10.7 0.3