==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER POTASSIUM CHANNEL INHIBITOR 01-APR-96 1SCO . COMPND 2 MOLECULE: SCORPION TOXIN OSK1; . SOURCE 2 ORGANISM_SCIENTIFIC: ORTHOCHIRUS SCROBICULOSUS; . AUTHOR V.A.JARAVINE,D.E.NOLDE,K.A.PLUZHNIKOV,E.V.GRISHIN, . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3284.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 68.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 31.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 85 0, 0.0 2,-0.4 0, 0.0 35,-0.2 0.000 360.0 360.0 360.0 130.6 6.3 -7.9 4.0 2 2 A V E -A 35 0A 66 33,-2.2 33,-1.8 2,-0.0 2,-0.3 -0.892 360.0-172.3-138.2 102.8 3.8 -7.9 1.1 3 3 A I E -A 34 0A 86 -2,-0.4 2,-0.3 31,-0.2 31,-0.2 -0.699 2.5-165.9 -93.7 149.8 4.8 -6.0 -2.1 4 4 A I E -A 33 0A 70 29,-2.5 29,-1.4 -2,-0.3 2,-1.1 -0.996 18.3-138.9-135.8 140.0 2.4 -5.5 -5.0 5 5 A N + 0 0 128 -2,-0.3 2,-0.4 27,-0.2 27,-0.1 -0.612 50.8 137.0-101.3 73.0 3.5 -4.3 -8.5 6 6 A V - 0 0 80 -2,-1.1 2,-1.3 27,-0.1 25,-0.1 -0.937 65.1-109.3-120.5 141.7 0.6 -1.9 -9.4 7 7 A K - 0 0 192 -2,-0.4 25,-0.2 25,-0.1 2,-0.1 -0.539 50.2-174.4 -65.1 96.2 0.9 1.5 -11.0 8 8 A a + 0 0 9 -2,-1.3 3,-0.1 23,-1.3 23,-0.1 -0.513 21.9 179.6 -83.9 165.0 -0.0 3.5 -7.9 9 9 A K + 0 0 177 1,-0.3 2,-0.4 -2,-0.1 -1,-0.1 0.583 68.5 31.0-124.9 -47.8 -0.6 7.3 -7.9 10 10 A I >> - 0 0 94 1,-0.1 4,-1.3 20,-0.0 3,-0.8 -0.937 65.2-139.0-118.2 134.9 -1.5 8.3 -4.3 11 11 A S H 3> S+ 0 0 66 -2,-0.4 4,-1.3 1,-0.3 3,-0.2 0.843 106.3 60.1 -58.6 -29.4 -0.3 6.6 -1.1 12 12 A R H 3> S+ 0 0 164 1,-0.2 4,-1.7 2,-0.2 -1,-0.3 0.883 98.6 55.6 -66.5 -36.2 -3.8 7.0 0.2 13 13 A Q H <4 S+ 0 0 100 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.2 0.793 113.3 41.1 -72.2 -25.2 -5.4 4.9 -2.6 14 14 A b H X S+ 0 0 11 -4,-1.3 4,-1.6 -3,-0.2 -1,-0.2 0.652 106.3 66.2 -84.2 -17.8 -3.1 2.0 -1.7 15 15 A L H X S+ 0 0 81 -4,-1.3 4,-2.0 -5,-0.3 -2,-0.2 0.923 94.8 59.0 -66.7 -42.1 -3.6 2.6 2.0 16 16 A E H >X S+ 0 0 83 -4,-1.7 4,-2.2 1,-0.2 3,-0.7 0.960 110.9 36.2 -55.8 -61.2 -7.4 1.7 1.7 17 17 A P H 3> S+ 0 0 72 0, 0.0 4,-2.3 0, 0.0 -1,-0.2 0.855 113.3 59.8 -64.9 -28.9 -7.0 -2.0 0.4 18 18 A c H 3X>S+ 0 0 9 -4,-1.6 4,-2.0 2,-0.2 5,-1.3 0.884 108.5 45.0 -62.2 -34.4 -3.9 -2.4 2.6 19 19 A K H <<5S+ 0 0 152 -4,-2.0 -1,-0.2 -3,-0.7 -3,-0.1 0.957 107.5 58.3 -69.6 -47.8 -6.2 -1.7 5.6 20 20 A K H <5S+ 0 0 188 -4,-2.2 -2,-0.2 1,-0.2 -1,-0.2 0.898 110.9 42.5 -46.7 -48.8 -8.9 -4.0 4.2 21 21 A A H <5S- 0 0 78 -4,-2.3 -1,-0.2 -5,-0.1 -2,-0.2 0.939 124.5-104.6 -64.1 -46.7 -6.3 -6.9 4.3 22 22 A G T <5 + 0 0 38 -4,-2.0 16,-1.8 -5,-0.2 2,-0.3 0.670 56.0 166.0 120.2 62.0 -5.0 -5.9 7.7 23 23 A M E < -B 37 0A 42 -5,-1.3 -1,-0.1 14,-0.3 3,-0.0 -0.844 35.7-149.5-108.6 143.2 -1.6 -4.2 7.2 24 24 A R E S+ 0 0 162 12,-1.7 2,-0.3 -2,-0.3 -1,-0.1 0.908 87.1 37.5 -74.3 -40.2 0.2 -2.1 9.8 25 25 A F E -B 36 0A 111 11,-1.4 11,-1.3 -7,-0.1 2,-0.3 -0.847 57.3-172.4-115.5 152.3 1.9 0.1 7.1 26 26 A G E +B 35 0A 17 -2,-0.3 2,-0.4 9,-0.2 9,-0.2 -0.871 24.5 154.6-138.0 99.2 0.6 1.5 3.8 27 27 A K E -B 34 0A 109 7,-1.6 7,-2.6 -2,-0.3 2,-0.4 -0.991 23.5-162.1-129.0 136.4 3.4 3.2 1.7 28 28 A a E -B 33 0A 16 -2,-0.4 2,-0.4 5,-0.2 5,-0.2 -0.961 6.2-156.6-113.4 140.9 3.7 3.8 -2.1 29 29 A M E > -B 32 0A 112 3,-2.0 3,-1.2 -2,-0.4 -21,-0.2 -0.969 54.7 -82.7-108.5 130.6 7.0 4.6 -3.8 30 30 A N T 3 S+ 0 0 167 -2,-0.4 -21,-0.1 1,-0.2 3,-0.1 -0.001 122.6 21.6 -41.1 91.5 6.2 6.4 -7.1 31 31 A G T 3 S+ 0 0 27 -25,-0.1 -23,-1.3 1,-0.1 2,-0.3 -0.421 120.8 32.3 149.7 -68.9 5.6 3.2 -9.1 32 32 A K E < S- B 0 29A 108 -3,-1.2 -3,-2.0 -25,-0.2 2,-0.4 -0.842 71.7-118.0-125.8 157.2 4.7 0.2 -6.8 33 33 A b E -AB 4 28A 0 -29,-1.4 -29,-2.5 -2,-0.3 2,-0.5 -0.799 21.3-168.9-101.7 139.1 2.9 -0.3 -3.5 34 34 A H E +AB 3 27A 69 -7,-2.6 -7,-1.6 -2,-0.4 2,-0.3 -0.956 12.3 171.7-127.6 105.5 4.6 -1.7 -0.4 35 35 A c E -AB 2 26A 3 -33,-1.8 -33,-2.2 -2,-0.5 -9,-0.2 -0.832 20.6-144.3-114.3 156.6 2.4 -2.7 2.6 36 36 A T E - B 0 25A 43 -11,-1.3 -12,-1.7 -2,-0.3 -11,-1.4 -0.979 21.7-117.7-121.8 135.2 3.5 -4.6 5.8 37 37 A P E B 0 23A 69 0, 0.0 -14,-0.3 0, 0.0 -15,-0.0 -0.298 360.0 360.0 -71.2 153.4 1.3 -7.1 7.6 38 38 A K 0 0 200 -16,-1.8 -15,-0.1 -14,-0.1 -16,-0.0 0.859 360.0 360.0 -93.9 360.0 0.2 -6.4 11.2