==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 02-JUN-94 1SCY . COMPND 2 MOLECULE: SCYLLATOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: LEIURUS QUINQUESTRIATUS HEBRAEUS; . AUTHOR J.C.MARTINS,F.J.M.VAN DE VEN,F.A.M.BORREMANS . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2554.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 67.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 131 0, 0.0 2,-1.9 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-145.4 -0.3 12.7 -13.6 2 2 A F - 0 0 164 2,-0.1 2,-0.8 3,-0.0 21,-0.0 -0.625 360.0-163.9 -69.0 84.8 -2.7 10.4 -11.7 3 3 A a - 0 0 32 -2,-1.9 2,-1.3 18,-0.2 18,-0.2 -0.744 29.8-122.2 -67.8 107.4 -1.2 7.3 -13.5 4 4 A N > - 0 0 66 -2,-0.8 4,-2.8 1,-0.2 3,-0.3 -0.451 32.4-173.9 -74.2 95.2 -4.2 5.2 -12.4 5 5 A L H > S+ 0 0 91 -2,-1.3 4,-3.1 1,-0.2 5,-0.2 0.807 82.2 57.2 -53.9 -37.0 -2.7 2.3 -10.5 6 6 A R H > S+ 0 0 201 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.951 111.9 40.3 -64.6 -48.8 -6.1 0.6 -10.1 7 7 A M H > S+ 0 0 109 -3,-0.3 4,-3.0 2,-0.2 5,-0.3 0.939 116.0 52.0 -62.0 -46.2 -6.6 0.5 -13.9 8 8 A b H X S+ 0 0 0 -4,-2.8 4,-2.8 1,-0.2 5,-0.3 0.958 111.0 46.9 -56.4 -52.5 -3.0 -0.4 -14.4 9 9 A Q H X S+ 0 0 53 -4,-3.1 4,-2.9 10,-0.2 10,-0.3 0.902 114.0 49.2 -51.5 -50.0 -3.2 -3.3 -11.9 10 10 A L H X S+ 0 0 104 -4,-2.4 4,-2.1 2,-0.2 -2,-0.2 0.955 113.5 43.6 -58.3 -52.4 -6.5 -4.5 -13.6 11 11 A S H X S+ 0 0 48 -4,-3.0 4,-0.7 1,-0.2 -2,-0.2 0.927 120.2 42.3 -64.7 -42.8 -5.2 -4.4 -17.1 12 12 A c H ><>S+ 0 0 0 -4,-2.8 5,-1.9 -5,-0.3 3,-1.3 0.902 110.3 57.4 -64.3 -43.1 -1.9 -6.0 -16.1 13 13 A R H ><5S+ 0 0 117 -4,-2.9 3,-2.2 -5,-0.3 -2,-0.2 0.832 95.9 63.9 -66.2 -32.0 -3.8 -8.5 -13.8 14 14 A S H 3<5S+ 0 0 92 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.844 107.0 43.4 -56.4 -33.4 -5.8 -9.7 -16.8 15 15 A L T <<5S- 0 0 131 -3,-1.3 -1,-0.3 -4,-0.7 -2,-0.2 0.179 127.5-106.6 -91.9 12.3 -2.4 -10.9 -18.2 16 16 A G T < 5S+ 0 0 51 -3,-2.2 -3,-0.3 1,-0.2 -2,-0.1 0.070 80.2 130.7 90.4 -20.6 -1.6 -12.2 -14.6 17 17 A L < - 0 0 44 -5,-1.9 2,-0.7 -6,-0.2 13,-0.2 0.214 65.6-111.5 -83.5 178.0 0.8 -9.4 -14.0 18 18 A L E -A 29 0A 75 11,-3.3 11,-2.3 13,-0.1 2,-0.2 -0.898 34.3-145.6-109.2 94.8 1.5 -6.8 -11.3 19 19 A G E +A 28 0A 3 -2,-0.7 2,-0.3 -10,-0.3 9,-0.3 -0.477 21.5 176.0 -64.5 130.5 0.7 -3.4 -12.7 20 20 A K E -A 27 0A 82 7,-2.0 7,-2.3 -2,-0.2 2,-0.6 -0.985 26.3-131.4-135.9 138.7 2.8 -0.5 -11.4 21 21 A a E -A 26 0A 36 -2,-0.3 5,-0.3 5,-0.2 -18,-0.2 -0.831 17.1-158.6-111.8 108.0 2.1 2.9 -13.0 22 22 A I - 0 0 72 3,-2.2 3,-0.1 -2,-0.6 -2,-0.0 -0.457 38.1 -94.5 -86.2 161.6 5.0 5.1 -14.3 23 23 A G S S+ 0 0 59 1,-0.3 3,-0.1 -2,-0.1 -1,-0.1 0.752 122.7 24.7 -40.1 -50.0 4.8 8.9 -14.8 24 24 A D S S- 0 0 118 1,-0.2 2,-0.3 -21,-0.1 -1,-0.3 0.797 130.8 -4.6 -81.7 -46.2 3.8 8.6 -18.5 25 25 A K S S- 0 0 129 -22,-0.1 -3,-2.2 -3,-0.1 -1,-0.2 -0.959 73.5 -81.8-156.7 159.7 2.2 5.2 -18.7 26 26 A b E -A 21 0A 51 -2,-0.3 2,-0.3 -5,-0.3 -5,-0.2 -0.514 38.4-172.6 -71.6 141.5 1.2 1.9 -17.0 27 27 A E E -A 20 0A 73 -7,-2.3 -7,-2.0 -2,-0.2 2,-0.3 -0.827 13.4-142.7-127.7 172.6 3.8 -1.0 -16.8 28 28 A c E -A 19 0A 47 -9,-0.3 -9,-0.3 -2,-0.3 2,-0.1 -0.886 9.7-167.9-145.0 97.4 3.3 -4.6 -15.6 29 29 A V E -A 18 0A 62 -11,-2.3 -11,-3.3 -2,-0.3 -2,-0.0 -0.465 21.0-134.9 -74.9 164.6 6.0 -6.5 -13.6 30 30 A K 0 0 145 -13,-0.2 -1,-0.1 -2,-0.1 -11,-0.0 0.955 360.0 360.0 -84.7 -76.7 5.4 -10.2 -13.4 31 31 A H 0 0 168 -14,-0.1 -13,-0.1 -13,-0.0 -1,-0.1 -0.450 360.0 360.0 -80.3 360.0 6.0 -11.2 -9.7