==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 10-MAR-04 1SMZ . COMPND 2 MOLECULE: TRANSPORTAN IN BICELLAR SOLUTION WITH . SOURCE 2 SYNTHETIC: YES; . AUTHOR E.BARANY-WALLJE,A.ANDERSSON,L.MALER,A.GRASLUND . 27 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2768.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 63.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 14.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 48.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 91 0, 0.0 3,-0.1 0, 0.0 4,-0.1 0.000 360.0 360.0 360.0-159.8 -15.9 19.7 2.3 2 2 A W + 0 0 260 1,-0.2 2,-0.3 2,-0.1 3,-0.0 0.990 360.0 94.4 55.0 73.2 -14.6 17.3 4.9 3 3 A T S >> S- 0 0 77 1,-0.0 3,-2.0 0, 0.0 4,-1.5 -0.968 95.7 -80.9-175.4 171.3 -16.6 14.3 3.7 4 4 A L H 3> S+ 0 0 147 1,-0.3 4,-1.1 -2,-0.3 -2,-0.1 0.744 124.9 66.0 -57.3 -23.0 -16.5 11.1 1.6 5 5 A N H 34 S+ 0 0 119 2,-0.2 4,-0.5 1,-0.1 -1,-0.3 0.814 103.4 45.7 -68.0 -31.2 -17.2 13.5 -1.2 6 6 A S H X> S+ 0 0 41 -3,-2.0 4,-2.3 2,-0.2 3,-1.4 0.985 113.4 43.5 -74.0 -64.9 -13.8 15.1 -0.6 7 7 A A H 3< S+ 0 0 50 -4,-1.5 4,-0.3 1,-0.3 -2,-0.2 0.729 93.9 92.3 -53.0 -21.3 -11.7 12.0 -0.3 8 8 A G T 3< S- 0 0 53 -4,-1.1 -1,-0.3 -5,-0.3 -2,-0.2 0.883 124.5 -42.0 -37.7 -57.9 -13.7 10.9 -3.3 9 9 A Y T <> S+ 0 0 151 -3,-1.4 4,-0.6 -4,-0.5 3,-0.2 0.096 119.4 95.1-167.9 30.4 -11.1 12.2 -5.6 10 10 A L T < S+ 0 0 69 -4,-2.3 -3,-0.2 1,-0.1 5,-0.1 0.163 74.3 70.2-112.2 13.2 -10.0 15.6 -4.2 11 11 A L T 4 S+ 0 0 118 -4,-0.3 -1,-0.1 -5,-0.2 -4,-0.1 0.012 113.3 22.4-116.8 23.4 -7.0 14.1 -2.4 12 12 A G T > S+ 0 0 23 -3,-0.2 4,-1.7 3,-0.1 -2,-0.1 0.372 109.9 64.6-151.6 -44.5 -5.1 13.3 -5.5 13 13 A K T < S+ 0 0 152 -4,-0.6 -3,-0.1 2,-0.2 -2,-0.1 0.639 121.9 29.2 -64.9 -13.2 -6.2 15.6 -8.3 14 14 A I T >> S+ 0 0 77 2,-0.1 3,-3.0 3,-0.1 4,-1.9 0.774 114.8 55.4-109.4 -55.4 -4.9 18.4 -6.1 15 15 A N H 3> S+ 0 0 88 1,-0.3 4,-1.7 2,-0.2 -2,-0.2 0.732 102.5 64.7 -52.2 -21.7 -2.1 16.8 -4.2 16 16 A L H 3X S+ 0 0 103 -4,-1.7 4,-0.8 2,-0.2 -1,-0.3 0.795 103.8 44.6 -71.7 -29.4 -0.8 16.0 -7.6 17 17 A K H <4 S+ 0 0 171 -3,-3.0 4,-0.4 2,-0.2 3,-0.3 0.894 116.6 43.5 -79.6 -44.4 -0.4 19.7 -8.3 18 18 A A H >X S+ 0 0 56 -4,-1.9 4,-1.8 1,-0.2 3,-0.8 0.753 106.0 65.4 -71.1 -25.1 1.2 20.4 -5.0 19 19 A L H 3X S+ 0 0 66 -4,-1.7 4,-3.8 -5,-0.3 5,-0.3 0.877 92.9 59.4 -63.7 -38.8 3.3 17.3 -5.5 20 20 A A H 3< S+ 0 0 48 -4,-0.8 4,-0.3 -3,-0.3 -1,-0.3 0.741 109.3 45.6 -61.1 -22.7 4.9 19.0 -8.4 21 21 A A H <> S+ 0 0 64 -3,-0.8 4,-0.9 -4,-0.4 -1,-0.2 0.789 115.3 44.6 -88.4 -33.4 6.0 21.6 -5.9 22 22 A L H X S+ 0 0 82 -4,-1.8 4,-2.1 2,-0.2 -2,-0.2 0.784 116.5 46.8 -79.3 -29.8 7.1 19.1 -3.3 23 23 A A H X S+ 0 0 36 -4,-3.8 4,-0.5 2,-0.2 -1,-0.2 0.669 110.5 53.8 -83.3 -19.5 8.9 17.1 -6.0 24 24 A K H 4 S+ 0 0 163 -5,-0.3 -2,-0.2 -4,-0.3 -1,-0.2 0.731 112.9 43.1 -84.2 -25.5 10.4 20.2 -7.3 25 25 A K H < S+ 0 0 168 -4,-0.9 -2,-0.2 1,-0.1 -3,-0.1 0.913 115.6 45.1 -83.6 -50.0 11.8 21.1 -3.9 26 26 A I H < 0 0 127 -4,-2.1 -2,-0.2 -5,-0.1 -3,-0.2 0.743 360.0 360.0 -64.9 -23.1 13.0 17.7 -2.9 27 27 A L < 0 0 168 -4,-0.5 -3,-0.1 -5,-0.1 0, 0.0 -0.293 360.0 360.0 -77.2 360.0 14.4 17.5 -6.4