==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ZINC FINGER 21-NOV-96 1SP2 . COMPND 2 MOLECULE: SP1F2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR V.A.NARAYAN,R.W.KRIWACKI,J.P.CARADONNA . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3526.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 51.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 244 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 86.1 14.1 -1.2 -2.0 2 2 A P - 0 0 123 0, 0.0 2,-0.5 0, 0.0 13,-0.1 -0.295 360.0-152.0 -61.7 142.0 11.8 1.4 -0.5 3 3 A F + 0 0 72 11,-0.5 11,-1.6 2,-0.0 2,-0.3 -0.725 33.7 148.4-120.5 83.9 8.2 0.1 0.2 4 4 A M B -A 13 0A 90 -2,-0.5 2,-0.3 9,-0.2 9,-0.2 -0.803 48.0-109.3-114.0 157.8 5.8 3.0 -0.1 5 5 A C - 0 0 14 7,-1.7 2,-1.1 -2,-0.3 6,-0.3 -0.641 21.5-138.5 -85.5 140.6 2.1 3.0 -1.2 6 6 A T + 0 0 123 -2,-0.3 2,-0.3 5,-0.1 -1,-0.1 -0.674 60.7 104.7 -99.2 83.8 1.3 4.5 -4.6 7 7 A W S > S- 0 0 97 -2,-1.1 3,-0.8 20,-0.0 4,-0.4 -0.992 70.2-102.2-154.5 158.8 -1.9 6.5 -4.0 8 8 A S T 3 S+ 0 0 95 -2,-0.3 -2,-0.0 1,-0.2 0, 0.0 -0.636 105.5 16.0 -86.0 142.2 -3.1 10.1 -3.5 9 9 A Y T 3 S+ 0 0 248 -2,-0.3 -1,-0.2 1,-0.1 0, 0.0 0.577 115.6 82.9 75.8 5.1 -3.8 11.3 0.1 10 10 A C < + 0 0 36 -3,-0.8 -2,-0.1 -5,-0.1 -1,-0.1 0.678 42.3 161.6-104.2 -93.3 -1.9 8.2 1.3 11 11 A G + 0 0 59 -4,-0.4 2,-0.4 -6,-0.3 -5,-0.1 0.991 25.6 157.4 69.8 59.7 1.9 8.5 1.5 12 12 A K - 0 0 122 -7,-0.2 -7,-1.7 2,-0.0 2,-0.2 -0.959 26.9-154.0-120.8 132.6 2.6 5.5 3.9 13 13 A R B -A 4 0A 197 -2,-0.4 2,-0.3 -9,-0.2 -9,-0.2 -0.638 11.8-171.9-100.4 161.5 5.9 3.7 4.2 14 14 A F - 0 0 38 -11,-1.6 -11,-0.5 -2,-0.2 3,-0.1 -0.932 32.8-125.6-144.8 168.7 6.4 0.1 5.3 15 15 A T S S+ 0 0 139 -2,-0.3 2,-0.2 1,-0.3 3,-0.1 0.128 97.7 25.5-104.1 21.7 9.2 -2.3 6.2 16 16 A R S >> S- 0 0 183 -13,-0.2 3,-1.8 1,-0.1 4,-0.9 -0.661 72.6-127.9 179.4 120.5 8.0 -5.0 3.8 17 17 A S H 3> S+ 0 0 50 1,-0.3 4,-1.5 2,-0.2 3,-0.2 0.801 102.8 81.9 -46.4 -24.5 5.9 -4.9 0.5 18 18 A D H >> S+ 0 0 97 1,-0.3 4,-1.2 2,-0.2 3,-1.0 0.946 92.7 44.2 -48.0 -51.5 3.9 -7.6 2.4 19 19 A E H <> S+ 0 0 117 -3,-1.8 4,-1.1 1,-0.3 -1,-0.3 0.859 107.4 60.6 -63.8 -31.1 2.0 -4.9 4.3 20 20 A L H 3X S+ 0 0 24 -4,-0.9 4,-2.0 -3,-0.2 -1,-0.3 0.773 98.5 60.5 -67.8 -21.9 1.7 -2.9 1.0 21 21 A Q H < S+ 0 0 38 -4,-1.1 3,-1.4 -5,-0.2 4,-0.3 0.897 98.6 53.2 -82.8 -42.7 -2.8 -2.0 2.1 24 24 A K H >X S+ 0 0 117 -4,-2.0 4,-0.8 1,-0.3 3,-0.6 0.728 102.6 62.0 -66.0 -17.0 -3.4 -1.5 -1.7 25 25 A R T 3< S+ 0 0 175 -4,-0.8 -1,-0.3 1,-0.2 -2,-0.2 0.698 98.9 54.7 -81.7 -16.6 -6.6 -3.5 -1.2 26 26 A T T <4 S+ 0 0 114 -3,-1.4 3,-0.3 -4,-0.3 -1,-0.2 0.443 99.9 62.8 -93.8 0.9 -8.0 -0.9 1.2 27 27 A H T <4 S+ 0 0 53 -3,-0.6 -2,-0.2 -4,-0.3 -1,-0.1 0.809 115.3 25.2 -93.4 -34.0 -7.4 1.9 -1.4 28 28 A T S < S+ 0 0 93 -4,-0.8 -1,-0.2 0, 0.0 -2,-0.1 -0.457 87.1 129.6-127.6 62.9 -9.9 0.6 -4.0 29 29 A G + 0 0 25 -3,-0.3 -3,-0.1 -2,-0.1 -2,-0.0 0.424 24.4 96.9 -86.8-130.9 -12.4 -1.5 -2.1 30 30 A E 0 0 190 1,-0.1 -1,-0.0 0, 0.0 0, 0.0 0.937 360.0 360.0 43.7 81.4 -16.2 -1.1 -2.5 31 31 A K 0 0 266 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.752 360.0 360.0-126.5 360.0 -16.8 -3.9 -5.1