==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPOPROTEIN(SURFACE FILM) 26-SEP-94 1SPF . COMPND 2 MOLECULE: PULMONARY SURFACTANT-ASSOCIATED POLYPEPTIDE C; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR J.JOHANSSON,T.SZYPERSKI,T.CURSTEDT,K.WUTHRICH . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3517.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 65.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 210 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 154.9 3.6 11.2 -25.0 2 2 A R - 0 0 212 3,-0.0 3,-0.1 5,-0.0 0, 0.0 0.187 360.0 -50.5 48.5-176.3 6.1 8.7 -23.6 3 3 A I - 0 0 101 1,-0.2 0, 0.0 4,-0.1 0, 0.0 -0.711 57.1-136.4 -74.3 140.1 8.1 9.6 -20.5 4 4 A P S S- 0 0 79 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 0.999 75.1 -40.1 -64.6 -66.3 9.7 13.0 -21.2 5 5 A C S S- 0 0 116 1,-1.1 -3,-0.0 -3,-0.1 0, 0.0 -0.432 129.0 -20.2-163.7 63.8 13.2 12.4 -19.9 6 6 A C S S- 0 0 84 5,-0.0 -1,-1.1 2,-0.0 2,-0.1 0.338 98.8 -76.9 88.2 134.6 12.5 10.4 -16.7 7 7 A P - 0 0 44 0, 0.0 -4,-0.1 0, 0.0 5,-0.0 -0.437 48.5-154.9 -61.5 136.4 8.9 10.7 -15.3 8 8 A V S >> S- 0 0 98 -2,-0.1 3,-2.7 3,-0.1 4,-0.6 0.547 70.9 -18.1 -80.7-133.2 8.4 14.0 -13.4 9 9 A N H 3> S+ 0 0 92 1,-0.3 4,-2.4 2,-0.2 5,-0.2 0.768 128.9 75.5 -46.5 -27.8 5.7 14.3 -10.6 10 10 A L H 3> S+ 0 0 109 1,-0.2 4,-2.9 2,-0.2 -1,-0.3 0.847 89.0 59.5 -54.0 -35.3 4.2 11.1 -12.2 11 11 A K H <> S+ 0 0 112 -3,-2.7 4,-2.5 2,-0.2 -1,-0.2 0.957 106.9 42.4 -58.3 -54.2 7.2 9.3 -10.4 12 12 A R H X S+ 0 0 188 -4,-0.6 4,-2.7 2,-0.2 -2,-0.2 0.847 111.3 56.8 -69.5 -26.4 6.1 10.5 -7.0 13 13 A L H X S+ 0 0 96 -4,-2.4 4,-2.8 2,-0.2 -2,-0.2 0.968 107.6 48.4 -59.0 -51.0 2.5 9.7 -8.0 14 14 A L H X S+ 0 0 103 -4,-2.9 4,-3.0 1,-0.2 -2,-0.2 0.915 109.2 52.9 -55.2 -45.6 3.8 6.2 -8.7 15 15 A V H X S+ 0 0 76 -4,-2.5 4,-2.9 2,-0.2 -1,-0.2 0.944 108.7 49.8 -55.1 -48.8 5.5 6.1 -5.3 16 16 A V H X S+ 0 0 86 -4,-2.7 4,-3.0 2,-0.2 -2,-0.2 0.939 110.4 50.5 -56.5 -46.8 2.2 7.1 -3.7 17 17 A V H X S+ 0 0 70 -4,-2.8 4,-2.9 1,-0.2 -2,-0.2 0.947 111.0 48.6 -54.5 -50.5 0.5 4.3 -5.6 18 18 A V H X S+ 0 0 89 -4,-3.0 4,-2.8 2,-0.2 -2,-0.2 0.912 111.3 50.0 -56.3 -44.3 3.2 1.9 -4.3 19 19 A V H X S+ 0 0 69 -4,-2.9 4,-3.2 2,-0.2 -2,-0.2 0.949 110.6 50.0 -60.0 -48.1 2.7 3.2 -0.8 20 20 A V H X S+ 0 0 82 -4,-3.0 4,-2.8 2,-0.2 -2,-0.2 0.933 111.5 48.2 -54.0 -50.2 -1.1 2.7 -1.1 21 21 A V H X S+ 0 0 85 -4,-2.9 4,-2.9 2,-0.2 -1,-0.2 0.919 112.6 48.5 -57.0 -46.7 -0.5 -0.9 -2.4 22 22 A L H X S+ 0 0 95 -4,-2.8 4,-2.7 2,-0.2 -2,-0.2 0.938 111.8 49.4 -59.4 -46.9 1.9 -1.6 0.6 23 23 A V H X S+ 0 0 70 -4,-3.2 4,-2.9 2,-0.2 -2,-0.2 0.899 110.6 50.6 -61.3 -40.8 -0.7 -0.1 3.0 24 24 A V H X S+ 0 0 75 -4,-2.8 4,-3.0 2,-0.2 -2,-0.2 0.947 110.1 49.4 -62.0 -47.6 -3.3 -2.4 1.4 25 25 A V H X S+ 0 0 93 -4,-2.9 4,-3.1 2,-0.2 -2,-0.2 0.895 111.3 50.2 -55.4 -40.7 -1.0 -5.4 1.8 26 26 A V H X S+ 0 0 87 -4,-2.7 4,-3.1 2,-0.2 -2,-0.2 0.943 111.0 48.3 -63.9 -46.1 -0.5 -4.3 5.5 27 27 A I H X S+ 0 0 100 -4,-2.9 4,-3.0 2,-0.2 -2,-0.2 0.906 112.8 49.2 -59.3 -42.6 -4.3 -4.1 5.9 28 28 A V H X S+ 0 0 68 -4,-3.0 4,-3.0 2,-0.2 -2,-0.2 0.966 112.4 46.2 -63.4 -52.8 -4.6 -7.5 4.3 29 29 A G H X S+ 0 0 36 -4,-3.1 4,-2.6 2,-0.2 -2,-0.2 0.924 113.6 50.6 -52.3 -47.3 -1.9 -9.0 6.6 30 30 A A H X S+ 0 0 34 -4,-3.1 4,-2.9 2,-0.2 5,-0.3 0.951 111.0 47.7 -56.9 -49.8 -3.6 -7.3 9.6 31 31 A L H < S+ 0 0 107 -4,-3.0 -2,-0.2 1,-0.2 -1,-0.2 0.912 111.0 51.6 -59.5 -44.6 -7.0 -8.7 8.5 32 32 A L H < S+ 0 0 144 -4,-3.0 -1,-0.2 1,-0.2 -2,-0.2 0.894 111.4 47.1 -61.3 -39.8 -5.4 -12.2 8.1 33 33 A M H < S- 0 0 177 -4,-2.6 -2,-0.2 -5,-0.2 -1,-0.2 0.912 140.3 -79.5 -63.6 -44.4 -3.9 -11.9 11.6 34 34 A G < 0 0 40 -4,-2.9 -3,-0.1 -5,-0.2 -4,-0.1 -0.156 360.0 360.0-179.9 -67.6 -7.3 -10.7 12.9 35 35 A L 0 0 190 -5,-0.3 -4,-0.1 -6,-0.0 -7,-0.0 -0.966 360.0 360.0-135.9 360.0 -8.1 -7.0 12.1