==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 23-MAR-04 1SS1 . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR S.SATO,T.L.RELIGA,V.DAGGETT,A.R.FERSHT . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4816.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 46 74.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 14.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 53.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -1 A G 0 0 129 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -41.4 82.8 -14.7 -6.8 2 0 A S - 0 0 77 1,-0.1 0, 0.0 0, 0.0 0, 0.0 -0.079 360.0 -69.6-167.0 -81.3 86.6 -14.6 -6.6 3 1 A T S S- 0 0 147 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.083 103.5 -13.9-156.9 -79.6 88.3 -14.5 -3.2 4 2 A A > - 0 0 49 -3,-0.1 3,-1.1 2,-0.0 36,-0.0 0.450 67.4-144.2-118.2 -8.3 88.1 -11.3 -1.1 5 3 A D T 3 - 0 0 129 1,-0.2 3,-0.3 2,-0.1 0, 0.0 0.760 51.5 -93.9 47.0 26.8 86.7 -8.9 -3.7 6 4 A N T 3 - 0 0 55 1,-0.2 2,-3.9 32,-0.1 -1,-0.2 0.853 45.5-155.4 30.9 66.5 89.0 -6.3 -2.0 7 5 A K < + 0 0 152 -3,-1.1 2,-2.6 1,-0.1 -1,-0.2 -0.193 27.7 165.2 -65.7 53.8 86.1 -5.1 0.2 8 6 A F - 0 0 24 -2,-3.9 5,-0.2 -3,-0.3 -1,-0.1 -0.435 21.1-166.9 -74.3 71.2 87.8 -1.8 0.7 9 7 A N > - 0 0 86 -2,-2.6 4,-4.6 3,-0.2 5,-0.4 0.220 44.1 -77.0 -48.2-179.5 84.7 -0.0 2.0 10 8 A K H > S+ 0 0 186 1,-0.2 4,-0.7 2,-0.2 -1,-0.1 0.827 137.5 45.7 -53.6 -33.6 84.6 3.8 2.3 11 9 A E H 4 S+ 0 0 170 2,-0.2 4,-0.3 1,-0.1 -1,-0.2 0.895 121.1 35.9 -77.2 -43.2 86.8 3.5 5.4 12 10 A Q H >> S+ 0 0 57 1,-0.2 3,-1.6 -5,-0.2 4,-0.6 0.867 110.5 61.5 -78.1 -39.2 89.3 1.0 3.9 13 11 A Q H >X S+ 0 0 113 -4,-4.6 4,-1.2 1,-0.3 3,-1.0 0.817 88.6 73.3 -57.3 -31.3 89.2 2.5 0.4 14 12 A N H 3X S+ 0 0 94 -4,-0.7 4,-2.5 -5,-0.4 5,-0.3 0.860 88.0 63.3 -52.2 -35.6 90.5 5.8 1.9 15 13 A A H <> S+ 0 0 0 -3,-1.6 4,-2.0 -4,-0.3 -1,-0.3 0.905 98.1 54.7 -54.9 -46.7 93.8 4.0 2.2 16 14 A F H < - 0 0 9 -4,-1.7 3,-3.0 -5,-0.3 2,-1.4 0.719 41.7-154.0 16.8 61.1 100.9 10.5 -0.8 23 21 A P T 3 S+ 0 0 77 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 -0.411 83.1 28.5 -61.6 93.1 102.0 13.9 -1.9 24 22 A N T 3 S+ 0 0 52 -2,-1.4 2,-0.4 1,-0.5 -2,-0.1 0.266 100.4 99.8 133.8 -0.4 105.6 13.7 -0.7 25 23 A L S < S- 0 0 6 -3,-3.0 -1,-0.5 -4,-0.2 2,-0.2 -0.880 89.3 -91.4-112.8 145.9 106.2 10.0 -1.0 26 24 A N >> - 0 0 96 -2,-0.4 4,-2.2 1,-0.2 3,-2.0 -0.345 33.2-144.2 -54.0 113.3 108.0 8.2 -3.8 27 25 A E H 3> S+ 0 0 134 1,-0.3 4,-2.9 2,-0.3 -1,-0.2 0.793 104.1 60.0 -55.3 -22.5 105.0 7.5 -6.0 28 26 A E H 3> S+ 0 0 151 2,-0.2 4,-1.9 1,-0.2 -1,-0.3 0.829 104.8 48.5 -72.1 -28.0 106.9 4.2 -6.8 29 27 A Q H <> S+ 0 0 79 -3,-2.0 4,-1.9 2,-0.2 -2,-0.3 0.882 108.7 54.1 -74.9 -39.0 106.6 3.6 -3.1 30 28 A R H X S+ 0 0 45 -4,-2.2 4,-1.5 2,-0.2 3,-0.4 0.964 108.1 48.6 -57.8 -54.7 102.9 4.4 -3.4 31 29 A N H >X S+ 0 0 83 -4,-2.9 4,-2.1 1,-0.3 3,-0.8 0.927 108.7 53.3 -51.8 -50.5 102.5 1.9 -6.1 32 30 A G H 3X S+ 0 0 32 -4,-1.9 4,-2.2 1,-0.3 -1,-0.3 0.872 106.4 53.8 -53.9 -37.2 104.3 -0.8 -4.0 33 31 A F H 3X S+ 0 0 15 -4,-1.9 4,-1.9 -3,-0.4 -1,-0.3 0.821 106.8 52.7 -66.5 -31.7 101.9 0.0 -1.2 34 32 A I H < + 0 0 68 -4,-0.7 3,-0.9 -3,-0.3 -1,-0.2 -0.845 60.5 174.7-135.7 98.8 96.2 -8.3 1.2 41 39 A P G > S+ 0 0 36 0, 0.0 3,-1.5 0, 0.0 4,-0.2 0.808 83.7 62.6 -71.4 -28.8 93.1 -6.3 2.4 42 40 A S G 3 S+ 0 0 110 1,-0.3 3,-0.4 2,-0.1 4,-0.2 0.595 97.4 60.8 -71.0 -10.3 93.8 -7.3 6.0 43 41 A Q G X> + 0 0 60 -3,-0.9 4,-2.9 -6,-0.3 3,-0.7 0.502 67.7 106.0 -93.8 -7.2 97.1 -5.4 5.6 44 42 A S H <> S+ 0 0 16 -3,-1.5 4,-1.8 1,-0.3 5,-0.2 0.774 83.5 50.4 -42.6 -30.3 95.3 -2.1 4.8 45 43 A A H 3> S+ 0 0 69 -3,-0.4 4,-2.0 2,-0.2 5,-0.3 0.907 111.7 44.3 -76.7 -44.3 96.4 -1.1 8.4 46 44 A N H <> S+ 0 0 103 -3,-0.7 4,-1.6 -4,-0.2 -2,-0.2 0.864 121.6 39.4 -68.7 -37.7 100.1 -2.1 8.0 47 45 A L H X S+ 0 0 14 -4,-2.9 4,-2.7 2,-0.2 5,-0.3 0.932 116.6 48.1 -77.6 -49.2 100.4 -0.5 4.5 48 46 A L H X S+ 0 0 46 -4,-1.8 4,-1.7 -5,-0.4 -2,-0.2 0.901 117.6 43.0 -58.6 -43.1 98.3 2.6 5.2 49 47 A A H X S+ 0 0 42 -4,-2.0 4,-2.6 -5,-0.2 5,-0.4 0.951 113.8 49.6 -68.7 -50.4 100.2 3.3 8.4 50 48 A E H X S+ 0 0 88 -4,-1.6 4,-2.0 -5,-0.3 -2,-0.2 0.885 115.1 45.3 -55.9 -41.0 103.6 2.5 7.0 51 49 A A H X S+ 0 0 1 -4,-2.7 4,-2.1 2,-0.2 -1,-0.2 0.834 111.5 54.2 -72.1 -33.5 102.9 4.8 4.1 52 50 A K H X S+ 0 0 78 -4,-1.7 4,-1.6 -5,-0.3 -2,-0.2 0.968 115.9 34.9 -64.9 -56.1 101.5 7.5 6.4 53 51 A K H X S+ 0 0 126 -4,-2.6 4,-2.2 2,-0.2 5,-0.3 0.917 117.9 53.4 -66.3 -44.5 104.5 7.8 8.7 54 52 A L H X S+ 0 0 55 -4,-2.0 4,-3.4 -5,-0.4 5,-0.4 0.948 108.2 49.6 -55.6 -52.4 107.0 7.2 5.9 55 53 A N H X S+ 0 0 18 -4,-2.1 4,-1.1 1,-0.2 -1,-0.2 0.882 108.9 55.1 -54.3 -41.2 105.6 10.0 3.7 56 54 A D H < S+ 0 0 102 -4,-1.6 -1,-0.2 2,-0.2 -2,-0.2 0.955 119.0 29.7 -58.6 -54.9 105.7 12.3 6.8 57 55 A A H < S+ 0 0 89 -4,-2.2 -2,-0.2 1,-0.2 -3,-0.2 0.944 123.7 47.2 -71.9 -50.1 109.5 11.8 7.4 58 56 A Q H < S+ 0 0 64 -4,-3.4 -1,-0.2 -5,-0.3 -3,-0.2 0.615 86.7 120.5 -67.9 -11.1 110.5 11.1 3.9 59 57 A A < - 0 0 11 -4,-1.1 -34,-0.1 -5,-0.4 -35,-0.1 -0.297 61.1-142.9 -56.5 132.9 108.5 14.1 2.8 60 58 A P S S+ 0 0 100 0, 0.0 -1,-0.1 0, 0.0 -36,-0.0 0.996 74.4 76.2 -61.3 -69.9 110.7 16.7 1.1 61 59 A K 0 0 133 1,-0.2 0, 0.0 0, 0.0 0, 0.0 0.130 360.0 360.0 -39.8 159.1 109.3 20.0 2.4 62 60 A A 0 0 167 0, 0.0 -1,-0.2 0, 0.0 -3,-0.0 0.179 360.0 360.0 178.7 360.0 110.1 21.1 5.9