==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 07-SEP-95 1SXM . COMPND 2 MOLECULE: NOXIUSTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: CENTRUROIDES NOXIUS; . AUTHOR M.DAUPLAIS,B.GILQUIN,L.D.POSSANI,G.GURROLA-BRIONES, . 39 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2782.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 48.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 17.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 15.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 100 0, 0.0 35,-1.0 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 84.8 -8.1 -3.1 4.3 2 2 A I B -A 35 0A 116 33,-0.2 33,-0.2 2,-0.0 2,-0.1 -0.989 360.0-167.7-127.3 130.6 -6.7 0.5 4.1 3 3 A I - 0 0 38 31,-1.1 2,-0.3 -2,-0.4 31,-0.1 -0.397 26.3-113.1-108.2-174.4 -3.5 1.6 5.9 4 4 A N + 0 0 122 -2,-0.1 2,-0.4 29,-0.1 31,-0.1 -0.739 59.1 130.0-131.0 80.4 -1.9 5.0 6.6 5 5 A V - 0 0 45 -2,-0.3 29,-1.0 29,-0.2 2,-0.2 -0.996 55.4-124.1-131.2 129.7 1.4 5.3 4.7 6 6 A K + 0 0 140 -2,-0.4 2,-0.2 27,-0.2 27,-0.2 -0.539 40.7 167.3 -79.9 135.7 2.0 8.5 2.6 7 7 A a - 0 0 15 -2,-0.2 -1,-0.0 23,-0.1 22,-0.0 -0.837 42.0-170.8-143.7 172.0 2.7 7.8 -1.1 8 8 A T S S+ 0 0 136 1,-0.4 24,-0.1 -2,-0.2 -2,-0.0 -0.036 88.4 33.4-153.4 22.9 3.0 9.4 -4.6 9 9 A S S > S- 0 0 43 21,-0.0 3,-0.9 19,-0.0 -1,-0.4 -0.904 80.4-118.6-172.0 149.7 3.3 6.1 -6.4 10 10 A P T 3 S+ 0 0 70 0, 0.0 4,-0.4 0, 0.0 3,-0.4 0.672 115.5 63.9 -71.7 -16.9 1.9 2.5 -5.9 11 11 A K T 3 S+ 0 0 166 2,-0.2 17,-0.0 1,-0.2 -4,-0.0 0.506 96.7 55.7 -79.1 -10.8 5.6 1.3 -5.5 12 12 A Q S < S+ 0 0 68 -3,-0.9 -1,-0.2 2,-0.1 22,-0.1 0.486 111.2 45.1 -89.9 -11.5 5.8 3.6 -2.3 13 13 A b S > S+ 0 0 0 -3,-0.4 4,-1.5 -4,-0.2 -2,-0.2 0.500 98.3 69.4-109.7 -13.6 2.8 1.5 -1.0 14 14 A S T 4 S+ 0 0 24 -4,-0.4 4,-0.4 2,-0.2 -3,-0.1 0.444 91.7 67.1 -83.7 -1.4 4.3 -1.9 -2.1 15 15 A K T 4 S+ 0 0 127 2,-0.1 4,-0.4 3,-0.1 -2,-0.2 0.938 110.2 27.4 -80.3 -59.1 6.9 -1.2 0.7 16 16 A P T > S+ 0 0 24 0, 0.0 4,-0.6 0, 0.0 3,-0.4 0.891 123.1 52.7 -70.6 -40.3 4.4 -1.5 3.8 17 17 A c H X S+ 0 0 0 -4,-1.5 4,-2.7 1,-0.2 5,-0.3 0.730 110.5 45.9 -69.5 -31.5 1.9 -3.9 2.0 18 18 A K H 4 S+ 0 0 81 -4,-0.4 -1,-0.2 3,-0.2 -3,-0.1 0.510 111.2 53.8 -88.1 -7.2 4.7 -6.5 1.0 19 19 A E H 4 S+ 0 0 173 -3,-0.4 -2,-0.2 -4,-0.4 -1,-0.2 0.592 121.5 33.0 -87.1 -19.2 6.0 -6.1 4.6 20 20 A L H < S+ 0 0 110 -4,-0.6 -2,-0.2 -5,-0.1 -3,-0.2 0.888 132.7 23.6 -93.9 -67.4 2.4 -7.0 5.6 21 21 A Y S >< S- 0 0 88 -4,-2.7 2,-1.0 1,-0.1 3,-0.8 0.479 96.5-134.9 -94.7 -9.5 0.8 -9.4 3.0 22 22 A G T 3 S- 0 0 47 -5,-0.3 -1,-0.1 1,-0.2 3,-0.1 -0.641 70.2 -26.2 103.6 -78.1 4.2 -10.8 1.7 23 23 A S T 3 S+ 0 0 99 -2,-1.0 2,-0.7 -6,-0.1 -1,-0.2 0.230 124.9 80.6-153.0 -8.5 4.2 -10.9 -2.1 24 24 A S < + 0 0 49 -3,-0.8 2,-0.4 -7,-0.1 0, 0.0 -0.716 66.5 136.8-105.4 71.1 0.4 -11.2 -2.5 25 25 A A - 0 0 2 -2,-0.7 2,-1.0 13,-0.3 13,-0.3 -0.993 47.1-158.2-129.4 123.2 -0.3 -7.5 -2.0 26 26 A G - 0 0 8 -2,-0.4 11,-1.3 -9,-0.1 2,-0.6 -0.805 26.8-170.9 -98.2 85.2 -2.6 -5.3 -4.1 27 27 A A E +B 36 0A 17 -2,-1.0 2,-0.3 9,-0.2 9,-0.2 -0.755 6.6 179.1 -94.5 114.4 -0.9 -2.1 -3.2 28 28 A K E -B 35 0A 95 7,-1.7 7,-2.0 -2,-0.6 2,-0.5 -0.912 18.4-153.2-122.9 142.0 -2.9 1.0 -4.4 29 29 A a E +B 34 0A 31 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.971 17.9 172.6-122.5 112.5 -2.0 4.7 -4.0 30 30 A M E > -B 33 0A 113 3,-1.7 2,-1.4 -2,-0.5 3,-1.1 -0.995 70.0 -27.1-121.7 123.5 -5.0 7.1 -4.0 31 31 A N T 3 S- 0 0 181 -2,-0.4 -2,-0.1 1,-0.2 3,-0.1 -0.553 124.9 -44.2 77.7 -84.6 -4.3 10.9 -3.1 32 32 A G T 3 S+ 0 0 21 -2,-1.4 2,-0.3 -27,-0.1 -1,-0.2 -0.105 116.6 93.0-170.8 54.5 -1.2 10.3 -1.0 33 33 A K E < - B 0 30A 77 -3,-1.1 -3,-1.7 -27,-0.2 2,-0.3 -0.966 66.4-119.3-154.0 152.2 -2.2 7.4 1.2 34 34 A b E - B 0 29A 1 -29,-1.0 -31,-1.1 -2,-0.3 2,-0.4 -0.673 14.6-163.6-105.8 144.1 -1.7 3.6 0.8 35 35 A K E -AB 2 28A 46 -7,-2.0 -7,-1.7 -2,-0.3 2,-0.5 -0.975 7.6-156.5-124.3 139.5 -4.2 0.7 0.6 36 36 A c E + B 0 27A 0 -35,-1.0 -9,-0.2 -2,-0.4 2,-0.1 -0.957 28.0 147.5-125.2 111.4 -3.1 -3.0 1.1 37 37 A Y - 0 0 73 -11,-1.3 2,-0.3 -2,-0.5 -16,-0.1 -0.031 44.7 -93.8-111.6-148.2 -5.3 -5.7 -0.5 38 38 A N 0 0 100 -13,-0.3 -13,-0.3 -2,-0.1 -14,-0.0 -0.939 360.0 360.0-134.6 156.1 -4.3 -9.1 -1.9 39 39 A N 0 0 136 -2,-0.3 -16,-0.1 -13,-0.0 -13,-0.1 -0.835 360.0 360.0 -90.0 360.0 -3.4 -10.3 -5.4