==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SUGAR BINDING PROTEIN 13-APR-04 1T0W . COMPND 2 MOLECULE: HEVEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.ABOITIZ,M.VILA-PERELLO,P.GROVES,J.L.ASENSIO,D.ANDREU,F.J.C . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2402.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 94 0, 0.0 22,-0.2 0, 0.0 21,-0.1 0.000 360.0 360.0 360.0-157.8 2.0 5.2 3.1 2 2 A Q + 0 0 118 20,-2.2 2,-0.2 1,-0.1 21,-0.2 0.786 360.0 7.0 -98.8 -33.5 4.4 2.3 1.9 3 3 A a S S+ 0 0 0 19,-2.7 8,-0.2 16,-0.1 3,-0.2 -0.817 96.9 29.9-141.1 174.1 2.7 0.9 -1.2 4 4 A G B > >S-A 10 0A 19 6,-3.1 3,-2.2 -2,-0.2 5,-2.2 -0.041 108.3 -30.9 66.8-169.4 -0.2 1.4 -3.6 5 5 A R G > 5S+ 0 0 197 1,-0.3 3,-2.3 3,-0.2 -1,-0.2 0.915 135.2 56.0 -53.1 -48.6 -1.9 4.7 -4.6 6 6 A Q G 3 5S+ 0 0 51 14,-0.3 -1,-0.3 1,-0.3 -2,-0.2 0.358 114.4 41.1 -74.0 9.0 -1.2 6.5 -1.2 7 7 A A G < 5S- 0 0 23 -3,-2.2 -1,-0.3 3,-0.1 -2,-0.2 0.233 124.8-100.6-120.0 5.3 2.5 5.7 -1.7 8 8 A G T < 5S- 0 0 56 -3,-2.3 -3,-0.2 -4,-0.4 -2,-0.1 0.940 80.2 -47.1 69.1 44.9 2.5 6.6 -5.5 9 9 A G S S- 0 0 82 0, 0.0 3,-2.8 0, 0.0 2,-2.3 -0.280 81.6 -11.8 -84.0 164.7 8.2 -7.4 -0.1 14 14 A N T 3 S- 0 0 164 1,-0.3 -2,-0.0 -2,-0.0 0, 0.0 -0.278 129.7 -38.6 53.3 -68.3 8.8 -11.2 -0.4 15 15 A N T 3 S+ 0 0 105 -2,-2.3 -1,-0.3 2,-0.1 2,-0.1 0.172 96.6 136.4-163.0 12.9 5.3 -12.1 -1.4 16 16 A L < - 0 0 69 -3,-2.8 -4,-0.4 1,-0.1 10,-0.1 -0.401 49.0-116.4 -84.2 160.5 2.9 -9.9 0.6 17 17 A c - 0 0 39 -2,-0.1 8,-2.6 -6,-0.1 2,-0.4 -0.323 21.6-127.3 -79.0 172.0 -0.2 -7.9 -0.4 18 18 A a B -B 24 0B 37 6,-0.2 6,-0.2 7,-0.1 -6,-0.0 -0.992 25.8-122.3-127.7 119.4 -0.7 -4.1 -0.3 19 19 A S - 0 0 6 4,-3.3 3,-0.4 -2,-0.4 11,-0.2 -0.211 20.5-114.3 -64.6 151.8 -3.6 -2.6 1.5 20 20 A Q S S+ 0 0 104 12,-0.6 -14,-0.3 9,-0.4 -15,-0.1 0.827 123.9 51.2 -48.6 -34.0 -6.2 -0.3 -0.0 21 21 A W S S- 0 0 158 2,-0.1 -1,-0.2 -16,-0.1 -15,-0.1 0.835 128.2-100.1 -79.0 -28.0 -4.8 2.3 2.4 22 22 A G S S+ 0 0 0 -3,-0.4 -19,-2.7 1,-0.3 -20,-2.2 0.713 78.1 115.2 121.1 35.2 -1.2 1.5 1.2 23 23 A W - 0 0 103 -21,-0.2 -4,-3.3 -22,-0.2 -1,-0.3 -0.880 62.2-102.3-130.5 161.0 0.6 -0.8 3.6 24 24 A b B +B 18 0B 31 -2,-0.3 -6,-0.2 -6,-0.2 7,-0.1 -0.573 57.1 121.2 -94.0 149.9 2.0 -4.3 3.3 25 25 A G - 0 0 20 -8,-2.6 -1,-0.1 5,-0.2 -7,-0.1 0.316 50.3-140.3-157.8 -75.5 0.3 -7.4 4.7 26 26 A S S S+ 0 0 52 1,-0.4 2,-0.2 -10,-0.1 -8,-0.1 0.371 72.9 106.4 91.9 2.4 -0.9 -10.6 2.8 27 27 A T S >> S- 0 0 64 -10,-0.1 3,-1.6 1,-0.1 4,-1.2 -0.533 90.0 -96.7-103.9 173.4 -4.0 -10.7 5.0 28 28 A D H >> S+ 0 0 110 1,-0.3 4,-3.3 2,-0.3 3,-1.4 0.962 125.0 54.6 -65.5 -47.6 -7.6 -9.8 3.8 29 29 A E H 34 S+ 0 0 108 1,-0.3 -9,-0.4 2,-0.2 -1,-0.3 0.664 118.9 38.3 -49.1 -20.8 -7.4 -6.2 5.2 30 30 A Y H <4 S+ 0 0 84 -3,-1.6 -1,-0.3 -11,-0.2 -2,-0.3 0.452 119.0 44.6-116.7 -6.3 -4.2 -5.9 3.1 31 31 A c H << 0 0 65 -3,-1.4 -2,-0.2 -4,-1.2 -3,-0.2 0.652 360.0 360.0-104.3 -24.8 -5.2 -7.9 -0.0 32 32 A S < 0 0 94 -4,-3.3 -12,-0.6 -5,-0.3 -1,-0.1 -0.763 360.0 360.0 -93.7 360.0 -8.7 -6.3 -0.4