==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 16-APR-04 1T1P . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.HUANG,B.XU,S.Q.HU,Y.C.CHU,Q.X.HUA,J.WHITTAKER, . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3876.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 64.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 7.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 29.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 96 0, 0.0 4,-0.3 0, 0.0 47,-0.0 0.000 360.0 360.0 360.0-166.8 -7.2 7.0 -1.0 2 2 A I > + 0 0 11 2,-0.1 4,-1.6 3,-0.1 5,-0.3 0.547 360.0 84.2-104.0 -10.0 -3.9 5.3 -0.3 3 3 A V H >> S+ 0 0 26 2,-0.2 4,-3.5 1,-0.2 3,-2.5 0.979 98.6 33.8 -54.4 -78.3 -2.4 6.0 -3.7 4 4 A E H 34>S+ 0 0 127 1,-0.3 5,-2.0 2,-0.2 -1,-0.2 0.883 110.1 70.1 -46.3 -37.4 -1.1 9.6 -3.0 5 5 A Q H 345S+ 0 0 94 -4,-0.3 -1,-0.3 1,-0.2 -2,-0.2 0.893 117.4 20.9 -50.2 -37.8 -0.4 8.3 0.5 6 6 A a H <<5S+ 0 0 0 -3,-2.5 22,-0.7 -4,-1.6 5,-0.4 0.714 132.4 44.8-102.9 -26.5 2.4 6.2 -1.0 7 7 A b T <5S+ 0 0 24 -4,-3.5 -3,-0.2 21,-0.4 22,-0.1 0.919 123.6 25.7 -82.1 -82.7 2.9 8.1 -4.2 8 8 A T T 5S+ 0 0 101 20,-0.1 -3,-0.2 19,-0.1 2,-0.1 0.955 140.2 30.3 -43.1 -63.4 3.0 11.9 -3.3 9 9 A S S > - 0 0 59 -2,-0.3 4,-1.7 13,-0.1 3,-0.6 -0.434 34.7-103.4 -96.2 175.1 7.0 1.3 3.6 13 13 A L H 3> S+ 0 0 49 10,-0.3 4,-1.0 1,-0.2 5,-0.1 0.797 118.6 65.9 -69.7 -24.8 6.2 -2.2 2.6 14 14 A Y H 3> S+ 0 0 176 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.858 104.0 46.1 -66.2 -30.0 4.6 -2.8 6.0 15 15 A Q H X> S+ 0 0 68 -3,-0.6 4,-1.4 2,-0.2 3,-0.7 0.948 106.3 54.5 -78.2 -47.4 1.9 -0.2 5.0 16 16 A L H 3< S+ 0 0 2 -4,-1.7 -1,-0.2 1,-0.3 31,-0.2 0.777 104.7 60.9 -57.1 -17.1 1.3 -1.6 1.5 17 17 A E H >< S+ 0 0 106 -4,-1.0 3,-1.9 1,-0.2 -1,-0.3 0.922 100.0 50.3 -74.8 -42.2 0.7 -4.8 3.6 18 18 A N H << S+ 0 0 97 -4,-1.1 -2,-0.2 -3,-0.7 -1,-0.2 0.751 111.7 50.9 -66.4 -19.6 -2.2 -3.1 5.4 19 19 A Y T 3< S+ 0 0 50 -4,-1.4 28,-1.0 28,-0.0 -1,-0.3 0.254 92.9 99.1-100.7 13.2 -3.5 -2.2 2.0 20 20 A c B < B 46 0B 12 -3,-1.9 26,-0.3 26,-0.2 25,-0.1 0.022 360.0 360.0 -81.3-162.2 -3.2 -5.8 0.7 21 21 A N 0 0 167 24,-2.1 25,-0.2 23,-0.4 24,-0.1 0.790 360.0 360.0 -57.5 360.0 -6.2 -8.1 0.5 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 120 0, 0.0 2,-0.3 0, 0.0 -10,-0.3 0.000 360.0 360.0 360.0 113.5 11.4 -1.6 -1.4 24 2 B V - 0 0 118 1,-0.2 -12,-0.1 -12,-0.1 -13,-0.0 -0.653 360.0 -7.0 -86.6 140.8 12.5 1.2 1.0 25 3 B N S S+ 0 0 122 -2,-0.3 2,-0.4 1,-0.1 -1,-0.2 0.894 85.7 177.9 40.6 91.2 10.9 4.6 0.6 26 4 B Q B -A 11 0A 79 -15,-1.1 -15,-1.2 -3,-0.2 2,-0.8 -0.967 30.7-143.1-128.1 143.5 8.9 4.2 -2.6 27 5 B H + 0 0 113 -2,-0.4 2,-0.6 -17,-0.2 -20,-0.3 -0.858 28.9 177.5-103.1 101.9 6.5 6.5 -4.5 28 6 B L + 0 0 10 -2,-0.8 -21,-0.4 -22,-0.7 2,-0.3 -0.907 8.0 155.4-113.6 121.1 3.7 4.4 -5.9 29 7 B b >> - 0 0 48 -2,-0.6 4,-0.8 -22,-0.1 3,-0.8 -0.952 58.1 -19.3-136.5 156.8 0.8 5.8 -7.8 30 8 B G H >> S- 0 0 30 -2,-0.3 4,-2.3 1,-0.3 3,-1.0 -0.144 135.4 -4.3 46.2-135.3 -1.7 4.4 -10.4 31 9 B S H 3> S+ 0 0 86 1,-0.3 4,-4.4 2,-0.2 -1,-0.3 0.942 131.2 64.9 -52.3 -50.7 -0.1 1.2 -11.9 32 10 B D H <> S+ 0 0 86 -3,-0.8 4,-1.8 1,-0.2 -1,-0.3 0.883 109.4 41.6 -42.1 -39.6 3.1 1.7 -10.0 33 11 B L H X S+ 0 0 13 -4,-1.8 4,-4.1 -5,-0.2 3,-1.4 0.977 120.9 52.4 -52.8 -55.2 3.7 -3.4 -6.0 37 15 B L H 3X>S+ 0 0 0 -4,-3.6 4,-1.8 1,-0.3 5,-0.8 0.944 108.3 51.2 -44.0 -54.9 0.2 -4.0 -4.6 38 16 B Y H 3<5S+ 0 0 149 -4,-5.4 -1,-0.3 -5,-0.3 -2,-0.2 0.823 122.3 33.5 -54.3 -30.8 -0.2 -6.8 -7.1 39 17 B L H <<5S+ 0 0 121 -4,-1.8 -2,-0.2 -3,-1.4 5,-0.2 0.905 106.5 63.3 -94.7 -52.0 3.1 -8.2 -5.8 40 18 B V H <5S+ 0 0 31 -4,-4.1 -3,-0.2 -5,-0.2 -2,-0.2 0.903 132.2 10.2 -38.7 -46.4 3.2 -7.3 -2.0 41 19 B c T ><5S+ 0 0 12 -4,-1.8 3,-1.5 -5,-0.4 2,-0.4 0.862 87.3 148.7 -98.0 -66.4 0.1 -9.5 -1.7 42 20 B G G >