==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GROWTH FACTOR 23-JAN-91 3TGF . COMPND 2 MOLECULE: TRANSFORMING GROWTH FACTOR-ALPHA; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR T.S.HARVEY,A.J.WILKINSON,M.J.TAPPIN,R.M.COOKE,I.D.CAMPBELL . 50 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3514.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 76.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 24.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 6.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V > 0 0 94 0, 0.0 5,-1.6 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 97.6 -10.3 0.6 -10.2 2 2 A V T >>5 - 0 0 110 3,-0.2 3,-2.5 2,-0.1 4,-1.6 0.975 360.0-114.2 61.1 109.5 -14.2 0.6 -10.1 3 3 A S T 345S+ 0 0 81 1,-0.3 22,-0.2 2,-0.2 -1,-0.0 0.572 110.4 51.5 -42.2 -56.7 -15.5 3.1 -7.5 4 4 A H T 345S+ 0 0 137 1,-0.1 22,-1.3 21,-0.1 -1,-0.3 0.791 126.8 27.6 -49.2 -39.4 -17.2 0.8 -4.9 5 5 A F T <45S- 0 0 102 -3,-2.5 20,-2.6 1,-0.3 2,-0.3 0.931 131.8 -6.0 -87.0 -69.1 -13.9 -1.3 -4.8 6 6 A N << + 0 0 11 -5,-1.6 -1,-0.3 -4,-1.6 18,-0.1 -0.978 42.4 150.1-137.7 154.1 -11.2 1.3 -5.7 7 7 A D + 0 0 99 16,-0.4 15,-0.1 -2,-0.3 17,-0.0 -0.530 35.5 171.5-166.0 95.5 -10.3 4.8 -6.8 8 8 A a - 0 0 27 13,-0.1 5,-0.1 -2,-0.1 -2,-0.0 -0.910 30.8-129.2-113.8 140.6 -6.9 5.8 -5.3 9 9 A P - 0 0 67 0, 0.0 12,-0.7 0, 0.0 3,-0.1 -0.127 14.2-156.2 -57.9 172.2 -4.4 8.7 -5.8 10 10 A D S > S+ 0 0 77 1,-0.2 2,-1.2 2,-0.2 9,-0.7 0.637 76.4 75.4-125.3 -47.2 -0.7 7.8 -6.4 11 11 A S B 3 S-A 18 0A 118 1,-0.4 -1,-0.2 7,-0.1 7,-0.2 -0.662 133.9 -4.9 -67.6 93.5 1.4 10.8 -5.3 12 12 A H T 3 S- 0 0 52 5,-2.2 2,-1.8 -2,-1.2 -1,-0.4 0.930 87.6-144.6 52.2 99.0 0.8 9.7 -1.7 13 13 A T < - 0 0 0 3,-3.0 2,-2.7 -3,-0.7 3,-0.5 -0.308 47.7 -92.9 -83.7 47.1 -1.6 6.9 -2.4 14 14 A Q S S+ 0 0 78 -2,-1.8 -1,-0.1 1,-0.3 3,-0.1 -0.261 125.2 32.2 64.9 -46.8 -3.6 7.7 0.8 15 15 A F S S+ 0 0 93 -2,-2.7 2,-0.3 1,-0.2 -1,-0.3 0.904 121.8 39.9 -90.8 -52.2 -1.5 5.2 2.7 16 16 A b > - 0 0 0 -3,-0.5 -3,-3.0 1,-0.1 3,-0.9 -0.814 62.1-139.3-117.7 148.5 2.0 5.3 1.0 17 17 A F T 3 S+ 0 0 90 25,-1.9 -5,-2.2 -2,-0.3 2,-0.4 0.940 106.4 19.1 -63.4 -59.6 4.3 7.9 -0.5 18 18 A H B 3 S+A 11 0A 72 25,-3.1 17,-2.5 24,-0.3 -1,-0.3 -0.564 105.1 114.2-115.3 63.5 5.4 6.0 -3.6 19 19 A G E < -B 34 0B 0 -3,-0.9 2,-0.4 -9,-0.7 15,-0.2 -0.732 60.6-140.1-123.6 164.8 2.6 3.4 -3.8 20 20 A T E -B 33 0B 45 13,-1.4 13,-2.6 -2,-0.2 2,-0.4 -0.951 42.5-148.7-125.3 95.5 -0.3 2.5 -6.1 21 21 A a E -B 32 0B 3 -12,-0.7 2,-1.4 -2,-0.4 11,-0.2 -0.670 29.7-145.1 -87.9 141.5 -3.0 1.7 -3.6 22 22 A R E -B 31 0B 114 9,-3.0 9,-1.4 -2,-0.4 2,-1.2 -0.801 27.9-168.1 -85.9 81.3 -6.0 -0.6 -3.4 23 23 A F E -B 30 0B 37 -2,-1.4 2,-1.3 7,-0.3 -16,-0.4 -0.893 15.0-146.4 -69.5 89.9 -8.0 1.9 -1.5 24 24 A L E >>> -B 29 0B 42 5,-2.9 5,-1.7 -2,-1.2 3,-0.7 -0.718 16.7-166.4 -64.2 88.6 -10.8 -0.5 -0.5 25 25 A V G >45S+ 0 0 52 -20,-2.6 3,-1.6 -2,-1.3 -1,-0.2 0.948 80.6 53.0 -55.7 -49.0 -13.4 2.3 -0.6 26 26 A Q G 345S+ 0 0 86 -22,-1.3 -1,-0.2 1,-0.3 -21,-0.1 0.679 118.2 38.3 -60.1 -26.6 -16.1 0.4 1.1 27 27 A E G <45S- 0 0 79 -3,-0.7 -1,-0.3 -22,-0.2 -2,-0.2 0.426 104.2-130.3 -92.8 -15.5 -13.7 -0.4 4.0 28 28 A D T <<5 + 0 0 122 -3,-1.6 -3,-0.2 -4,-0.7 -2,-0.1 0.577 64.5 134.7 55.6 34.3 -12.0 3.1 3.9 29 29 A K E < -B 24 0B 113 -5,-1.7 -5,-2.9 2,-0.0 2,-0.4 -0.858 42.2-160.6-118.4 110.0 -8.7 1.3 3.8 30 30 A P E +B 23 0B 33 0, 0.0 2,-0.3 0, 0.0 -7,-0.3 -0.794 14.8 171.5 -88.2 128.5 -5.7 2.1 1.5 31 31 A A E -B 22 0B 52 -9,-1.4 -9,-3.0 -2,-0.4 2,-0.2 -0.975 23.6-122.8-139.7 145.5 -3.0 -0.6 0.9 32 32 A b E -B 21 0B 34 -2,-0.3 2,-0.7 9,-0.3 -11,-0.3 -0.546 24.8-158.2-112.5 143.4 -0.2 -0.3 -1.6 33 33 A V E -B 20 0B 72 -13,-2.6 -13,-1.4 -2,-0.2 -17,-0.0 -0.936 46.2-131.8 -94.3 101.9 1.6 -1.8 -4.6 34 34 A c E -B 19 0B 40 -2,-0.7 -15,-0.3 -15,-0.2 3,-0.2 -0.343 28.5 -96.9 -57.3 140.1 4.9 0.1 -4.1 35 35 A H > - 0 0 57 -17,-2.5 3,-2.3 1,-0.2 -1,-0.1 -0.115 57.6 -64.0 -56.5 160.6 6.3 1.7 -7.3 36 36 A S T 3 S+ 0 0 119 1,-0.3 -1,-0.2 10,-0.0 3,-0.1 -0.236 125.4 3.4 -53.0 107.8 8.9 0.1 -9.6 37 37 A G T 3 S+ 0 0 51 1,-0.3 10,-3.0 -3,-0.2 2,-0.3 0.682 105.8 119.1 81.1 26.4 12.1 -0.2 -7.6 38 38 A Y E < -C 46 0C 76 -3,-2.3 -1,-0.3 8,-0.3 2,-0.3 -0.884 52.5-133.3-117.8 153.1 10.6 1.1 -4.3 39 39 A V E > -C 45 0C 54 6,-3.2 6,-1.6 -2,-0.3 5,-0.6 -0.863 29.1-124.0-121.2 166.0 10.3 -0.6 -0.8 40 40 A G T >5 + 0 0 26 -2,-0.3 2,-1.5 3,-0.2 4,-0.6 0.860 65.7 83.3-111.0-142.1 7.5 -0.7 1.5 41 41 A A T 45S+ 0 0 91 1,-0.2 -9,-0.3 2,-0.1 -1,-0.1 -0.658 134.4 6.9 60.2 -75.1 5.1 -0.5 4.5 42 42 A R T 45S- 0 0 118 -2,-1.5 -25,-1.9 -3,-0.1 -24,-0.3 -0.012 107.2-120.1-113.3 30.2 4.4 3.1 3.6 43 43 A c T 45 + 0 0 1 -27,-0.2 -25,-3.1 -26,-0.2 -3,-0.2 0.866 69.3 136.4 23.5 62.9 6.4 2.9 0.3 44 44 A E << + 0 0 78 -4,-0.6 2,-0.2 -5,-0.6 -4,-0.2 0.710 50.2 64.0 -93.1 -26.5 8.8 5.6 1.4 45 45 A H E S-C 39 0C 72 -6,-1.6 -6,-3.2 -5,-0.2 2,-0.2 -0.660 75.1-120.4-115.2 146.9 12.1 4.1 0.4 46 46 A A E -C 38 0C 30 4,-2.2 2,-0.3 3,-0.4 -8,-0.3 -0.563 55.0 -79.5 -78.6 151.8 13.9 3.0 -2.9 47 47 A D S S- 0 0 97 -10,-3.0 2,-2.5 -2,-0.2 -1,-0.1 -0.426 103.9 -32.5 -59.1 100.3 14.9 -0.7 -3.3 48 48 A L S S+ 0 0 160 -2,-0.3 2,-2.2 1,-0.2 -1,-0.2 -0.342 134.3 79.0 82.1 -44.9 18.1 -0.9 -1.2 49 49 A L 0 0 143 -2,-2.5 -3,-0.4 1,-0.2 -1,-0.2 -0.319 360.0 360.0 -83.1 54.5 19.1 2.7 -2.2 50 50 A A 0 0 109 -2,-2.2 -4,-2.2 -5,-0.2 -1,-0.2 0.770 360.0 360.0 -37.5 360.0 16.6 3.8 0.6