==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CALCIUM-BINDING PROTEIN 07-JUL-95 1TNP . COMPND 2 MOLECULE: TROPONIN-C (APO); . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR S.M.GAGNE,B.D.SYKES . 90 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7487.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 65 72.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 3.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 4.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 14 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 44 48.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 145 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 141.9 -19.1 4.5 11.3 2 2 A S + 0 0 108 1,-0.1 3,-0.1 2,-0.0 0, 0.0 0.979 360.0 167.4 62.9 88.7 -19.3 4.5 7.5 3 3 A M > + 0 0 121 1,-0.1 3,-0.7 2,-0.0 -1,-0.1 -0.291 34.8 122.3-123.0 44.9 -15.9 3.2 6.1 4 4 A T T 3 S+ 0 0 118 1,-0.2 -1,-0.1 2,-0.1 -2,-0.0 0.209 85.8 36.6 -85.5 12.8 -17.1 2.6 2.5 5 5 A D T >> + 0 0 113 -3,-0.1 4,-1.4 2,-0.1 3,-0.7 -0.024 65.5 140.9-156.1 33.4 -14.2 5.0 1.5 6 6 A Q H <> S+ 0 0 79 -3,-0.7 4,-1.1 1,-0.2 -2,-0.1 0.825 70.9 70.1 -44.2 -36.1 -11.3 4.2 4.0 7 7 A Q H >> S+ 0 0 93 1,-0.2 3,-1.1 2,-0.2 4,-0.7 0.947 101.0 40.1 -50.1 -60.0 -9.1 4.7 0.8 8 8 A A H <> S+ 0 0 56 -3,-0.7 4,-1.7 1,-0.2 3,-0.4 0.824 104.0 70.2 -61.8 -33.0 -9.7 8.5 0.7 9 9 A E H 3X S+ 0 0 124 -4,-1.4 4,-1.1 1,-0.2 -1,-0.2 0.828 93.0 59.0 -55.1 -35.7 -9.4 8.8 4.5 10 10 A A H XX S+ 0 0 2 -4,-1.1 4,-1.5 -3,-1.1 3,-0.6 0.930 106.2 44.1 -61.4 -50.6 -5.6 8.0 4.2 11 11 A R H 3< S+ 0 0 173 -4,-0.7 -1,-0.2 -3,-0.4 -2,-0.2 0.845 109.8 57.6 -65.9 -35.9 -4.8 11.0 2.0 12 12 A A H 3< S+ 0 0 80 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.782 105.8 50.9 -64.9 -29.7 -7.0 13.4 4.2 13 13 A F H << S+ 0 0 133 -4,-1.1 -1,-0.2 -3,-0.6 -2,-0.2 0.895 108.9 54.1 -77.1 -44.4 -4.8 12.4 7.3 14 14 A L S < S- 0 0 27 -4,-1.5 69,-0.0 1,-0.2 3,-0.0 -0.397 88.8-110.1 -88.7 168.9 -1.4 13.1 5.7 15 15 A S - 0 0 71 -2,-0.1 4,-0.4 1,-0.1 -1,-0.2 0.024 29.4-101.6 -85.9-166.9 -0.3 16.4 4.0 16 16 A E S > S+ 0 0 180 2,-0.1 4,-1.0 3,-0.1 3,-0.3 0.920 120.6 34.8 -83.4 -54.5 0.4 17.2 0.3 17 17 A E H > S+ 0 0 147 1,-0.2 4,-1.3 2,-0.2 -1,-0.1 0.831 110.2 65.9 -71.9 -32.7 4.3 17.1 0.3 18 18 A M H > S+ 0 0 78 1,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.865 100.0 52.2 -57.1 -37.1 4.3 14.3 3.0 19 19 A I H >> S+ 0 0 39 -4,-0.4 4,-1.4 -3,-0.3 3,-0.6 0.930 103.7 55.7 -66.6 -48.4 2.6 12.0 0.3 20 20 A A H 3X S+ 0 0 53 -4,-1.0 4,-0.9 1,-0.2 -1,-0.2 0.802 102.6 58.3 -54.3 -32.4 5.4 12.7 -2.3 21 21 A E H >X S+ 0 0 140 -4,-1.3 4,-0.7 1,-0.2 3,-0.6 0.891 103.1 50.6 -68.3 -41.3 8.0 11.5 0.3 22 22 A F H < S+ 0 0 43 -4,-0.7 3,-0.6 -3,-0.4 4,-0.5 0.810 107.9 63.2 -70.6 -32.9 10.6 4.5 -1.2 26 26 A F H >X S+ 0 0 3 -4,-1.4 4,-1.4 1,-0.2 3,-0.7 0.827 100.0 54.5 -60.7 -33.9 7.8 2.9 -3.4 27 27 A D H 3< S+ 0 0 83 -4,-1.5 -1,-0.2 -3,-0.4 -2,-0.2 0.775 87.0 79.9 -71.6 -29.5 10.1 3.4 -6.5 28 28 A M T << S+ 0 0 155 -4,-0.6 -1,-0.2 -3,-0.6 3,-0.2 0.836 110.7 25.2 -47.2 -36.4 13.0 1.4 -4.8 29 29 A F T <4 S+ 0 0 82 -3,-0.7 2,-0.8 -4,-0.5 -1,-0.2 0.751 125.4 53.9-100.7 -33.6 11.0 -1.8 -5.9 30 30 A D < + 0 0 39 -4,-1.4 3,-0.4 1,-0.2 -1,-0.2 -0.813 65.2 175.3-106.0 90.5 9.2 -0.1 -8.9 31 31 A A S S+ 0 0 73 -2,-0.8 2,-0.9 1,-0.3 -1,-0.2 0.984 77.5 17.8 -52.3 -83.5 12.0 1.5 -11.1 32 32 A D S S+ 0 0 166 1,-0.1 -1,-0.3 2,-0.0 -5,-0.0 -0.824 127.2 40.4 -98.2 97.8 9.9 2.7 -14.1 33 33 A G - 0 0 64 -2,-0.9 -1,-0.1 -3,-0.4 -2,-0.1 -0.307 59.1-166.6 168.7 -72.1 6.2 2.8 -13.0 34 34 A G + 0 0 20 -4,-0.2 -7,-0.1 2,-0.2 3,-0.1 0.979 69.4 84.2 53.5 63.4 5.5 4.1 -9.4 35 35 A G S S+ 0 0 37 1,-0.3 40,-0.9 -9,-0.1 2,-0.3 0.355 91.9 11.8-154.7 -41.5 1.9 2.8 -9.3 36 36 A D E +A 74 0A 71 38,-0.2 -1,-0.3 39,-0.1 2,-0.2 -0.990 56.5 172.6-154.6 142.5 1.8 -1.0 -8.2 37 37 A I E -A 73 0A 19 36,-1.4 36,-1.1 -2,-0.3 2,-0.1 -0.720 45.5 -62.5-137.7-175.2 4.3 -3.5 -6.8 38 38 A S > - 0 0 79 -2,-0.2 4,-0.9 34,-0.1 34,-0.1 -0.449 31.1-141.6 -75.9 151.8 4.2 -7.1 -5.4 39 39 A T H > S+ 0 0 31 32,-0.3 4,-0.8 2,-0.2 -1,-0.1 0.755 100.8 61.1 -82.5 -30.0 2.1 -8.0 -2.2 40 40 A K H 4 S+ 0 0 193 1,-0.2 4,-0.4 2,-0.2 -1,-0.2 0.831 112.8 37.5 -65.1 -34.2 4.8 -10.5 -0.9 41 41 A E H > S+ 0 0 96 2,-0.1 4,-1.5 1,-0.1 3,-0.5 0.722 95.8 85.1 -90.3 -28.2 7.4 -7.5 -0.7 42 42 A L H >X S+ 0 0 14 -4,-0.9 4,-1.4 1,-0.3 3,-0.8 0.888 90.2 49.9 -39.2 -58.6 4.8 -4.9 0.5 43 43 A G H 3X S+ 0 0 7 -4,-0.8 4,-1.5 1,-0.3 -1,-0.3 0.887 102.5 59.9 -51.3 -47.5 5.2 -5.9 4.2 44 44 A T H 3> S+ 0 0 67 -3,-0.5 4,-1.7 -4,-0.4 -1,-0.3 0.868 104.4 52.7 -48.3 -41.1 9.1 -5.7 3.8 45 45 A V H << S+ 0 0 8 -4,-1.5 4,-0.3 -3,-0.8 -1,-0.3 0.928 101.7 59.1 -58.4 -49.0 8.4 -2.0 3.0 46 46 A M H >X S+ 0 0 14 -4,-1.4 3,-0.7 1,-0.2 4,-0.6 0.862 110.7 41.8 -50.3 -41.5 6.3 -1.6 6.2 47 47 A R H >X S+ 0 0 169 -4,-1.5 4,-1.0 1,-0.2 3,-0.5 0.828 106.9 60.7 -77.9 -34.7 9.4 -2.6 8.3 48 48 A M H 3< S+ 0 0 153 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.320 97.5 61.5 -81.2 8.9 11.9 -0.5 6.2 49 49 A L H <4 S- 0 0 79 -3,-0.7 -1,-0.2 -4,-0.3 -2,-0.2 0.715 133.5 -78.3 -98.7 -33.7 9.9 2.7 7.2 50 50 A G H << S+ 0 0 66 -4,-0.6 -2,-0.2 -3,-0.5 -3,-0.1 0.543 85.1 131.0 136.9 53.1 10.5 2.2 11.0 51 51 A Q < - 0 0 60 -4,-1.0 -4,-0.1 -5,-0.2 -5,-0.0 -0.333 46.1-146.9-114.5-169.5 8.2 -0.5 12.4 52 52 A N + 0 0 151 -2,-0.1 2,-0.1 2,-0.0 -5,-0.1 -0.202 41.9 144.4-158.6 50.2 8.5 -3.7 14.5 53 53 A P - 0 0 54 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.378 48.1 -99.7 -99.5 176.0 5.9 -6.4 13.3 54 54 A T > - 0 0 83 1,-0.1 4,-1.0 -2,-0.1 -2,-0.0 -0.675 15.7-138.3 -96.4 149.6 5.8 -10.2 13.0 55 55 A K H > S+ 0 0 175 -2,-0.3 4,-0.8 2,-0.2 3,-0.2 0.883 107.1 50.6 -73.3 -39.7 6.3 -12.1 9.6 56 56 A E H >> S+ 0 0 143 1,-0.2 4,-0.7 2,-0.2 3,-0.5 0.846 106.6 55.5 -66.1 -36.6 3.4 -14.6 10.4 57 57 A E H >> S+ 0 0 121 1,-0.2 4,-1.6 2,-0.2 3,-0.7 0.813 96.7 64.5 -66.7 -31.2 1.1 -11.6 11.2 58 58 A L H 3X S+ 0 0 31 -4,-1.0 4,-1.3 1,-0.3 -1,-0.2 0.837 92.4 64.3 -61.5 -33.2 1.9 -10.2 7.7 59 59 A D H -A 36 0A 53 -2,-0.3 4,-1.3 -38,-0.2 -38,-0.2 -0.624 37.0-101.7-119.0 176.1 -1.3 0.2 -5.2 75 75 A F H > S+ 0 0 24 -40,-0.9 4,-1.5 -2,-0.2 5,-0.1 0.788 118.4 57.7 -68.7 -29.8 -0.0 3.5 -3.5 76 76 A E H >> S+ 0 0 118 -41,-0.2 4,-1.2 2,-0.2 3,-0.8 0.994 112.3 35.6 -66.5 -66.2 -3.7 4.3 -2.5 77 77 A E H 3> S+ 0 0 65 1,-0.2 4,-1.2 2,-0.2 -1,-0.2 0.797 112.3 66.5 -53.3 -31.3 -4.4 1.1 -0.4 78 78 A F H 3X S+ 0 0 7 -4,-1.3 4,-1.3 1,-0.2 3,-0.4 0.895 101.0 45.8 -62.4 -40.6 -0.6 1.4 0.6 79 79 A L H