==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 05-FEB-97 1TSK . COMPND 2 MOLECULE: TS KAPA; . SOURCE 2 ORGANISM_SCIENTIFIC: TITYUS SERRULATUS; . AUTHOR E.BLANC,H.DARBON . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2786.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 130 0, 0.0 34,-1.2 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 163.1 3.5 -6.6 8.5 2 2 A V E -A 34 0A 86 32,-0.3 2,-0.3 33,-0.1 32,-0.3 -0.569 360.0-174.0 -71.1 123.2 4.2 -2.9 9.2 3 3 A I E -A 33 0A 50 30,-0.9 30,-1.8 -2,-0.4 2,-1.0 -0.872 37.7-118.4-125.6 159.7 7.2 -1.8 7.1 4 4 A G + 0 0 74 -2,-0.3 2,-1.0 28,-0.2 30,-0.1 -0.239 69.2 125.9 -84.7 43.7 9.4 1.2 6.7 5 5 A Q - 0 0 78 -2,-1.0 -2,-0.1 28,-0.0 -1,-0.1 -0.852 66.8-128.4-105.8 88.2 8.5 1.7 3.1 6 6 A R - 0 0 199 -2,-1.0 26,-0.3 26,-0.2 2,-0.3 0.103 24.0-131.4 -38.9 147.2 7.4 5.3 3.5 7 7 A a + 0 0 28 24,-1.7 3,-0.1 1,-0.1 -1,-0.1 -0.715 35.8 169.6-112.5 160.6 4.0 6.3 2.2 8 8 A Y S S+ 0 0 184 1,-0.6 2,-0.2 -2,-0.3 -1,-0.1 0.543 82.3 18.2-123.1 -58.7 2.4 8.9 0.0 9 9 A R S S- 0 0 158 22,-0.0 -1,-0.6 18,-0.0 0, 0.0 -0.725 98.3 -84.2-116.4 165.2 -1.1 7.4 -0.4 10 10 A S S S+ 0 0 81 -2,-0.2 19,-0.1 -3,-0.1 -1,-0.0 0.829 125.7 32.7 -34.7 -59.2 -3.0 4.7 1.5 11 11 A P + 0 0 42 0, 0.0 -1,-0.1 0, 0.0 14,-0.0 0.976 64.7 135.5 -62.2 -86.5 -1.4 1.9 -0.5 12 12 A D S S+ 0 0 64 1,-0.2 21,-0.1 -5,-0.1 15,-0.1 0.786 87.9 44.9 34.2 36.9 2.2 3.0 -1.3 13 13 A b S > S+ 0 0 4 13,-0.1 4,-2.7 -6,-0.1 3,-0.5 0.232 78.4 100.8-170.0 -27.2 3.0 -0.5 -0.2 14 14 A Y H > S+ 0 0 103 1,-0.3 4,-2.7 2,-0.2 11,-0.4 0.860 85.5 51.7 -38.2 -55.5 0.3 -2.7 -2.0 15 15 A S H > S+ 0 0 100 1,-0.2 4,-2.5 2,-0.2 -1,-0.3 0.930 113.2 44.7 -50.5 -51.8 2.7 -3.7 -4.7 16 16 A A H > S+ 0 0 13 -3,-0.5 4,-1.5 1,-0.2 -2,-0.2 0.921 111.8 52.4 -58.2 -47.5 5.3 -4.8 -2.0 17 17 A c H X>S+ 0 0 0 -4,-2.7 4,-3.0 8,-0.2 5,-1.7 0.869 108.2 52.1 -58.7 -39.5 2.6 -6.5 0.1 18 18 A K H <5S+ 0 0 105 -4,-2.7 -1,-0.2 -5,-0.3 -2,-0.2 0.969 114.2 41.0 -64.7 -52.2 1.6 -8.4 -3.0 19 19 A K H <5S+ 0 0 154 -4,-2.5 -1,-0.2 -5,-0.2 -2,-0.2 0.634 119.6 48.7 -71.6 -10.7 5.1 -9.6 -3.7 20 20 A L H <5S- 0 0 101 -4,-1.5 -2,-0.2 -5,-0.2 -3,-0.2 0.896 138.4 -3.9 -92.6 -50.4 5.6 -10.2 0.1 21 21 A V T <5S- 0 0 115 -4,-3.0 -3,-0.2 2,-0.2 -2,-0.1 0.680 106.0 -96.2-114.1 -32.4 2.5 -12.2 1.1 22 22 A G S -B 32 0A 50 3,-2.9 3,-2.0 -2,-0.8 -22,-0.1 -0.978 68.6 -19.6-126.3 119.5 0.4 4.3 9.0 30 30 A N T 3 S- 0 0 119 -2,-0.5 -1,-0.1 1,-0.3 3,-0.1 0.878 122.8 -60.8 50.3 43.4 2.6 7.1 10.4 31 31 A G T 3 S+ 0 0 40 1,-0.2 -24,-1.7 -25,-0.1 2,-0.3 0.683 125.5 94.4 59.9 20.5 3.9 7.7 6.9 32 32 A R E < S- B 0 29A 130 -3,-2.0 -3,-2.9 -26,-0.3 -1,-0.2 -0.883 87.1 -84.5-132.9 160.9 5.2 4.1 6.9 33 33 A b E -AB 3 28A 0 -30,-1.8 -30,-0.9 -2,-0.3 2,-0.4 -0.466 30.1-169.2 -73.2 142.1 3.6 0.9 5.6 34 34 A D E AB 2 27A 50 -7,-2.2 -7,-2.2 -32,-0.3 -32,-0.3 -0.823 360.0 360.0-128.0 85.9 1.2 -1.1 7.9 35 35 A c 0 0 50 -34,-1.2 -9,-0.1 -2,-0.4 -33,-0.1 -0.400 360.0 360.0-107.4 360.0 0.7 -4.4 6.1