==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 05-AUG-04 1U86 . COMPND 2 MOLECULE: KRUPPEL-LIKE FACTOR 3; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR E.D.CRAM,J.P.MACKAY,J.M.MATTHEWS . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3044.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 22.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 118 0, 0.0 2,-1.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-164.9 12.5 -6.0 8.9 2 2 A S + 0 0 115 1,-0.1 3,-0.2 2,-0.1 0, 0.0 -0.664 360.0 152.5 -83.9 94.6 12.3 -4.3 5.5 3 3 A T + 0 0 97 -2,-1.3 -1,-0.1 1,-0.1 15,-0.1 -0.270 38.2 104.2-115.5 43.3 8.7 -4.9 4.5 4 4 A G + 0 0 33 1,-0.1 2,-1.7 13,-0.0 -1,-0.1 0.635 54.1 88.1 -98.6 -15.7 8.3 -1.9 2.3 5 5 A I + 0 0 157 -3,-0.2 -1,-0.1 13,-0.1 13,-0.1 -0.633 62.1 147.5 -84.7 80.8 8.4 -3.7 -0.9 6 6 A K - 0 0 50 -2,-1.7 3,-0.4 1,-0.1 14,-0.1 -0.919 53.9-138.3-119.2 149.0 4.7 -4.5 -1.2 7 7 A P S S+ 0 0 114 0, 0.0 2,-1.1 0, 0.0 13,-0.1 0.830 105.2 60.6 -74.2 -29.1 2.5 -4.9 -4.2 8 8 A F E S+A 19 0A 66 11,-1.2 11,-2.1 -3,-0.1 2,-0.5 -0.383 80.8 164.0 -91.9 50.3 -0.2 -3.0 -2.5 9 9 A Q E -A 18 0A 78 -2,-1.1 9,-0.3 -3,-0.4 2,-0.2 -0.647 40.4-124.5 -77.3 126.2 2.0 0.1 -2.2 10 10 A C - 0 0 3 7,-1.6 7,-0.2 -2,-0.5 6,-0.1 -0.485 14.5-146.1 -68.0 128.0 0.3 3.3 -1.3 11 11 A T + 0 0 97 -2,-0.2 -1,-0.1 5,-0.1 7,-0.1 0.094 58.4 122.3 -90.6 27.4 1.3 5.8 -4.0 12 12 A W > - 0 0 88 1,-0.2 4,-3.1 5,-0.1 5,-0.3 -0.769 51.6-154.3 -91.6 121.9 1.3 8.8 -1.6 13 13 A P T 4 S+ 0 0 116 0, 0.0 -1,-0.2 0, 0.0 -3,-0.0 0.918 92.7 39.7 -64.2 -48.9 4.8 10.5 -1.7 14 14 A D T 4 S+ 0 0 148 1,-0.1 -2,-0.1 2,-0.0 0, 0.0 0.708 123.4 44.4 -76.5 -16.9 4.8 12.1 1.7 15 15 A C T 4 S- 0 0 20 2,-0.1 -1,-0.1 -5,-0.0 -4,-0.1 0.942 76.9-174.4 -88.6 -59.7 3.1 9.0 3.1 16 16 A D < + 0 0 112 -4,-3.1 2,-0.2 1,-0.2 -5,-0.1 0.955 22.1 165.3 62.9 53.1 5.1 6.2 1.4 17 17 A R - 0 0 136 -5,-0.3 -7,-1.6 -7,-0.2 2,-0.3 -0.634 22.2-164.0-100.8 157.7 3.0 3.3 2.8 18 18 A S E -A 9 0A 25 -9,-0.3 -9,-0.3 -2,-0.2 2,-0.3 -0.992 10.3-167.6-146.7 128.9 3.0 -0.3 1.6 19 19 A F E -A 8 0A 28 -11,-2.1 -11,-1.2 -2,-0.3 3,-0.1 -0.811 32.4-167.6-119.9 166.5 0.3 -2.9 2.3 20 20 A S S S+ 0 0 77 -2,-0.3 2,-0.6 -13,-0.1 -1,-0.1 0.422 79.5 79.3-119.9 -14.7 -0.5 -6.6 2.0 21 21 A R > - 0 0 132 -13,-0.1 4,-2.6 1,-0.1 3,-0.5 -0.884 58.2-166.4-102.2 119.3 -4.2 -6.1 2.7 22 22 A S H > S+ 0 0 75 -2,-0.6 4,-1.1 1,-0.2 -1,-0.1 0.788 93.6 52.1 -72.8 -26.4 -6.3 -4.9 -0.2 23 23 A D H 4 S+ 0 0 112 2,-0.2 4,-0.5 3,-0.1 -1,-0.2 0.559 113.9 44.6 -87.5 -7.6 -9.1 -4.1 2.2 24 24 A H H > S+ 0 0 83 -3,-0.5 4,-2.4 2,-0.1 -2,-0.2 0.850 113.6 44.7-101.9 -43.0 -6.8 -2.0 4.3 25 25 A L H X S+ 0 0 26 -4,-2.6 4,-1.7 2,-0.2 5,-0.2 0.811 108.1 62.3 -73.1 -21.2 -4.9 -0.1 1.7 26 26 A A H X S+ 0 0 45 -4,-1.1 4,-2.3 -5,-0.3 -1,-0.2 0.957 110.9 36.3 -66.6 -47.4 -8.3 0.6 -0.0 27 27 A L H > S+ 0 0 93 -4,-0.5 4,-2.6 2,-0.2 5,-0.2 0.880 114.7 57.4 -73.3 -33.1 -9.6 2.5 2.9 28 28 A H H < S+ 0 0 30 -4,-2.4 4,-0.4 1,-0.2 -1,-0.2 0.827 113.1 41.1 -61.5 -32.9 -6.1 3.9 3.6 29 29 A R H X S+ 0 0 82 -4,-1.7 4,-1.5 2,-0.2 -2,-0.2 0.831 110.9 55.2 -86.9 -33.3 -6.3 5.3 0.0 30 30 A K H <>S+ 0 0 107 -4,-2.3 5,-2.3 1,-0.2 -2,-0.2 0.900 109.2 47.8 -65.1 -40.5 -9.9 6.4 0.2 31 31 A R T <5S+ 0 0 144 -4,-2.6 3,-0.3 4,-0.2 -1,-0.2 0.729 103.5 65.0 -74.3 -18.0 -9.1 8.5 3.3 32 32 A H T 45S+ 0 0 17 -4,-0.4 -1,-0.2 1,-0.2 -2,-0.2 0.928 108.0 37.7 -67.9 -45.8 -6.1 9.9 1.4 33 33 A M T <5S- 0 0 129 -4,-1.5 -1,-0.2 -3,-0.1 -2,-0.2 0.370 119.8-115.0 -88.2 7.4 -8.3 11.6 -1.1 34 34 A L T 5 0 0 159 -3,-0.3 -3,-0.2 -5,-0.1 -2,-0.1 0.965 360.0 360.0 58.3 59.7 -10.8 12.4 1.7 35 35 A V < 0 0 132 -5,-2.3 -4,-0.2 -6,-0.1 -5,-0.1 0.384 360.0 360.0-138.5 360.0 -13.7 10.2 0.5