==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=13-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSLATION 11-JUN-03 1UFZ . COMPND 2 MOLECULE: HYPOTHETICAL PROTEIN BAB28515; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR F.HE,Y.MUTO,N.HAYAMI,M.SHIROUZU,T.TERADA,T.KIGAWA,M.INOUE, . 83 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7185.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 57 68.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 43 51.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 122 0, 0.0 4,-0.3 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 -87.9 -23.5 -8.2 -10.2 2 2 A S + 0 0 121 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.350 360.0 8.8 -66.1 145.0 -25.2 -10.9 -12.3 3 3 A S S S+ 0 0 133 1,-0.1 -1,-0.2 -2,-0.0 3,-0.0 0.951 98.0 111.9 45.4 81.0 -26.6 -9.9 -15.6 4 4 A G S S- 0 0 69 -3,-0.2 2,-0.5 0, 0.0 -2,-0.1 0.263 74.8 -8.8-136.9 -93.3 -25.2 -6.4 -15.8 5 5 A S S S+ 0 0 65 -4,-0.3 2,-0.3 5,-0.0 -2,-0.0 -0.967 74.1 136.4-126.8 115.2 -22.6 -5.3 -18.3 6 6 A S + 0 0 98 -2,-0.5 4,-0.4 -3,-0.0 5,-0.1 -0.957 33.8 43.0-150.6 164.6 -20.8 -7.8 -20.5 7 7 A G S > S- 0 0 57 -2,-0.3 4,-1.3 3,-0.1 0, 0.0 0.136 81.0 -90.1 79.6 161.0 -19.6 -8.3 -24.0 8 8 A E H > S+ 0 0 166 2,-0.2 4,-1.9 1,-0.1 3,-0.1 0.987 121.5 52.5 -69.4 -62.5 -18.0 -5.9 -26.4 9 9 A Y H > S+ 0 0 195 1,-0.2 4,-1.9 2,-0.2 3,-0.3 0.885 106.0 56.6 -37.9 -58.7 -21.1 -4.4 -28.0 10 10 A G H > S+ 0 0 25 -4,-0.4 4,-2.2 1,-0.3 3,-0.5 0.911 104.3 50.6 -39.2 -67.3 -22.5 -3.6 -24.6 11 11 A Y H X S+ 0 0 161 -4,-1.3 4,-2.7 1,-0.3 -1,-0.3 0.869 106.5 57.4 -39.3 -51.5 -19.6 -1.6 -23.4 12 12 A E H < S+ 0 0 139 -4,-1.9 -1,-0.3 -3,-0.3 -2,-0.2 0.930 107.6 46.0 -46.3 -57.7 -19.8 0.4 -26.6 13 13 A D H < S+ 0 0 114 -4,-1.9 -1,-0.2 -3,-0.5 -2,-0.2 0.947 108.7 55.8 -50.9 -56.3 -23.4 1.4 -25.9 14 14 A L H < S- 0 0 86 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.896 94.9-159.8 -42.1 -51.7 -22.5 2.3 -22.3 15 15 A R < - 0 0 196 -4,-2.7 -3,-0.1 -5,-0.2 -2,-0.1 0.922 52.1 -16.2 64.6 99.4 -19.9 4.7 -23.7 16 16 A E S S- 0 0 164 -5,-0.1 2,-0.2 1,-0.1 3,-0.0 0.339 119.0 -32.2 57.7 161.1 -17.3 5.5 -21.1 17 17 A S - 0 0 52 1,-0.2 3,-0.2 3,-0.0 -1,-0.1 -0.262 59.6-150.7 -49.5 109.0 -17.8 4.8 -17.4 18 18 A S S S+ 0 0 78 1,-0.2 2,-0.4 -2,-0.2 -1,-0.2 0.936 82.6 14.2 -47.5 -57.7 -21.5 5.3 -17.1 19 19 A N > + 0 0 103 1,-0.2 4,-0.8 2,-0.1 -1,-0.2 -0.991 59.7 179.4-127.5 128.7 -21.1 6.4 -13.5 20 20 A S H > S+ 0 0 91 -2,-0.4 4,-3.4 -3,-0.2 5,-0.2 0.919 81.9 54.6 -88.6 -56.7 -17.8 7.4 -11.9 21 21 A L H > S+ 0 0 151 2,-0.2 4,-3.1 1,-0.2 5,-0.3 0.920 109.7 49.0 -40.5 -63.9 -18.9 8.3 -8.4 22 22 A L H > S+ 0 0 112 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.927 112.3 47.1 -40.8 -67.3 -20.5 4.9 -7.9 23 23 A N H >< S+ 0 0 95 -4,-0.8 3,-1.1 1,-0.2 -1,-0.2 0.906 111.8 52.1 -40.7 -57.3 -17.5 3.1 -9.2 24 24 A H H 3< S+ 0 0 162 -4,-3.4 -1,-0.2 1,-0.3 -2,-0.2 0.934 102.7 57.1 -44.9 -60.4 -15.3 5.2 -6.9 25 25 A Q H 3< S- 0 0 113 -4,-3.1 -1,-0.3 -5,-0.2 -2,-0.2 0.822 97.7-166.2 -40.6 -38.9 -17.5 4.4 -3.9 26 26 A L << - 0 0 55 -4,-1.7 2,-0.1 -3,-1.1 -2,-0.1 0.403 33.4 -58.3 60.0 153.6 -16.7 0.8 -4.7 27 27 A S > - 0 0 72 1,-0.1 4,-3.5 -4,-0.1 5,-0.2 -0.405 48.8-118.2 -66.1 137.4 -18.6 -2.1 -3.2 28 28 A E H > S+ 0 0 153 1,-0.2 4,-3.3 2,-0.2 5,-0.2 0.862 115.1 54.5 -40.4 -47.0 -18.5 -2.2 0.6 29 29 A I H > S+ 0 0 106 2,-0.2 4,-1.8 1,-0.2 3,-0.3 0.979 113.2 37.2 -51.5 -73.7 -16.8 -5.6 0.3 30 30 A D H >> S+ 0 0 49 1,-0.2 4,-3.8 2,-0.2 3,-0.9 0.913 115.0 57.8 -44.2 -54.0 -13.9 -4.4 -2.0 31 31 A Q H 3X S+ 0 0 58 -4,-3.5 4,-3.5 1,-0.3 5,-0.5 0.909 103.8 50.6 -42.3 -57.1 -13.8 -1.2 -0.1 32 32 A A H 3X S+ 0 0 57 -4,-3.3 4,-1.9 -3,-0.3 -1,-0.3 0.847 116.0 44.6 -51.2 -36.5 -13.2 -3.0 3.1 33 33 A R H X S+ 0 0 12 -4,-3.8 4,-4.5 2,-0.2 3,-0.7 0.955 118.9 39.5 -52.8 -57.0 -9.0 -1.7 -0.4 35 35 A Y H 3X S+ 0 0 125 -4,-3.5 4,-2.4 1,-0.3 5,-0.3 0.899 113.6 54.5 -60.0 -43.7 -8.9 0.1 2.9 36 36 A S H 3< S+ 0 0 84 -4,-1.9 4,-0.4 -5,-0.5 -1,-0.3 0.715 119.5 36.3 -63.0 -20.7 -7.8 -3.0 4.7 37 37 A C H > S+ 0 0 111 -4,-0.4 4,-1.0 -3,-0.4 3,-0.5 0.978 115.7 40.2 -51.3 -73.1 -1.3 -1.6 5.4 41 41 A M H 3X>S+ 0 0 0 -4,-1.9 4,-3.1 1,-0.2 5,-1.8 0.714 112.6 64.2 -50.0 -21.5 0.8 -0.4 2.5 42 42 A R H 3<>S+ 0 0 99 -4,-3.0 5,-1.3 -5,-0.4 -1,-0.2 0.974 96.3 50.2 -67.4 -57.7 0.1 3.0 4.0 43 43 A E H <<5S+ 0 0 154 -4,-2.5 -1,-0.2 -3,-0.5 -2,-0.2 0.691 121.6 41.0 -54.4 -18.0 1.9 2.4 7.3 44 44 A V H <5S- 0 0 71 -4,-1.0 -2,-0.2 -5,-0.2 4,-0.2 0.900 143.9 -3.8 -92.2 -74.8 4.7 1.3 5.0 45 45 A L T >X5S+ 0 0 19 -4,-3.1 4,-2.8 1,-0.2 3,-2.1 0.831 117.5 81.3 -88.4 -38.9 4.8 3.7 2.0 46 46 A G T 34 - 0 0 62 0, 0.0 4,-0.6 0, 0.0 -1,-0.1 0.165 22.0-104.2 -75.0-162.6 -0.0 9.0 -0.9 51 51 A D H > S+ 0 0 77 2,-0.2 4,-4.5 3,-0.1 5,-0.2 0.887 111.8 60.3 -92.1 -52.6 -3.1 6.8 -1.2 52 52 A D H > S+ 0 0 130 1,-0.3 4,-3.9 2,-0.2 5,-0.3 0.906 103.6 52.8 -38.7 -62.2 -3.7 6.9 -4.9 53 53 A I H > S+ 0 0 91 1,-0.2 4,-2.4 2,-0.2 -1,-0.3 0.901 117.2 38.5 -40.3 -56.4 -0.3 5.5 -5.6 54 54 A L H X S+ 0 0 0 -4,-0.6 4,-2.6 2,-0.2 -2,-0.2 0.952 114.0 55.4 -61.1 -52.2 -1.1 2.6 -3.2 55 55 A T H X S+ 0 0 32 -4,-4.5 4,-2.3 1,-0.2 5,-0.2 0.914 110.0 46.5 -45.4 -54.4 -4.7 2.5 -4.4 56 56 A E H X S+ 0 0 107 -4,-3.9 4,-2.1 1,-0.2 5,-0.3 0.962 107.7 54.8 -53.5 -59.6 -3.5 2.0 -8.0 57 57 A A H X S+ 0 0 11 -4,-2.4 4,-0.7 -5,-0.3 3,-0.2 0.875 108.7 50.9 -40.6 -48.3 -1.0 -0.6 -7.1 58 58 A I H ><>S+ 0 0 0 -4,-2.6 5,-2.2 1,-0.3 3,-1.5 0.941 113.3 42.7 -56.4 -51.2 -3.8 -2.5 -5.5 59 59 A L H ><5S+ 0 0 88 -4,-2.3 3,-0.6 1,-0.3 -1,-0.3 0.640 103.6 70.4 -69.6 -14.1 -5.9 -2.2 -8.7 60 60 A K H 3<5S+ 0 0 127 -4,-2.1 -1,-0.3 -3,-0.2 -2,-0.2 0.709 117.1 20.5 -74.1 -21.1 -2.7 -3.0 -10.5 61 61 A H T <<5S- 0 0 46 -3,-1.5 -1,-0.2 -4,-0.7 -2,-0.2 -0.069 114.8-105.1-136.7 30.9 -3.0 -6.5 -9.1 62 62 A K T < 5S- 0 0 140 -3,-0.6 -3,-0.3 -5,-0.1 -4,-0.1 0.923 92.6 -30.3 40.1 67.4 -6.7 -6.6 -8.3 63 63 A F S > + 0 0 73 1,-0.1 4,-3.7 -7,-0.0 3,-2.2 -0.364 19.2 174.2-158.4 66.0 -2.8 -8.0 -4.0 65 65 A V H 3> S+ 0 0 23 1,-0.3 4,-4.7 2,-0.3 5,-0.5 0.898 83.3 61.9 -39.7 -56.0 -0.8 -6.1 -1.4 66 66 A Q H 3> S+ 0 0 164 1,-0.2 4,-1.5 2,-0.2 -1,-0.3 0.834 119.2 28.2 -39.7 -41.7 1.8 -8.9 -1.4 67 67 A K H <> S+ 0 0 102 -3,-2.2 4,-3.1 2,-0.2 5,-0.4 0.921 116.7 57.1 -86.1 -54.4 2.2 -8.0 -5.1 68 68 A A H X S+ 0 0 0 -4,-3.7 4,-3.6 1,-0.2 -3,-0.2 0.843 115.0 43.1 -44.4 -38.6 1.3 -4.3 -4.9 69 69 A L H X S+ 0 0 26 -4,-4.7 4,-2.9 -5,-0.4 5,-0.3 0.968 109.9 52.4 -72.5 -56.6 4.1 -4.1 -2.3 70 70 A S H X S+ 0 0 62 -4,-1.5 4,-1.3 -5,-0.5 -2,-0.2 0.787 122.3 35.9 -49.4 -29.3 6.6 -6.3 -4.2 71 71 A V H X S+ 0 0 27 -4,-3.1 4,-2.3 2,-0.2 -2,-0.2 0.869 113.2 54.5 -90.3 -46.5 5.9 -3.9 -7.1 72 72 A V H X S+ 0 0 14 -4,-3.6 4,-0.6 -5,-0.4 -2,-0.2 0.714 114.7 46.4 -59.8 -19.8 5.5 -0.7 -5.1 73 73 A L H >X S+ 0 0 93 -4,-2.9 4,-3.1 2,-0.2 3,-0.7 0.911 111.6 45.8 -86.5 -52.1 8.9 -1.6 -3.7 74 74 A E H 3X S+ 0 0 112 -4,-1.3 4,-1.1 -5,-0.3 -2,-0.2 0.708 104.9 68.0 -63.5 -20.0 10.6 -2.5 -7.0 75 75 A Q H 3< S+ 0 0 127 -4,-2.3 4,-0.4 2,-0.2 -1,-0.2 0.914 112.8 27.1 -65.5 -44.8 9.1 0.7 -8.3 76 76 A D H X< S+ 0 0 111 -3,-0.7 3,-2.0 -4,-0.6 -2,-0.2 0.910 115.9 60.6 -82.5 -48.5 11.2 2.9 -6.0 77 77 A G H 3< S+ 0 0 39 -4,-3.1 -2,-0.2 1,-0.3 -3,-0.2 0.755 90.9 74.8 -49.8 -26.3 14.1 0.5 -5.7 78 78 A S T 3< S+ 0 0 88 -4,-1.1 -1,-0.3 -5,-0.2 -2,-0.2 0.905 89.1 57.8 -53.6 -45.9 14.3 0.9 -9.5 79 79 A G S < S+ 0 0 67 -3,-2.0 2,-0.7 -4,-0.4 -1,-0.2 0.960 102.4 53.2 -47.5 -70.8 15.9 4.3 -9.0 80 80 A P S S+ 0 0 105 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.612 79.8 130.3 -75.0 113.2 18.9 3.2 -6.9 81 81 A S + 0 0 100 -2,-0.7 -3,-0.0 1,-0.1 -4,-0.0 -0.982 40.4 23.1-159.9 156.9 20.6 0.4 -8.8 82 82 A S 0 0 130 -2,-0.3 -1,-0.1 1,-0.1 0, 0.0 0.217 360.0 360.0 66.8 164.2 24.1 -0.6 -10.0 83 83 A G 0 0 128 -3,-0.1 -1,-0.1 0, 0.0 0, 0.0 -0.597 360.0 360.0 163.8 360.0 27.3 0.6 -8.4