==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ACTIN BINDING 09-SEP-03 1UNC . COMPND 2 MOLECULE: VILLIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR W.VERMEULEN,M.VAN TROYS,P.VANHAESEBROUCK,M.VERSCHUEREN, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2598.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 65.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 95 0, 0.0 2,-0.1 0, 0.0 34,-0.0 0.000 360.0 360.0 360.0 85.2 5.0 4.2 -3.2 2 2 A S > - 0 0 70 1,-0.1 4,-2.7 0, 0.0 5,-0.1 -0.440 360.0-101.2 -83.1 170.7 2.0 6.5 -2.9 3 3 A I H > S+ 0 0 113 2,-0.2 4,-2.4 1,-0.2 5,-0.2 0.893 128.1 49.8 -58.2 -39.3 -1.2 5.3 -1.1 4 4 A E H > S+ 0 0 129 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.920 110.3 47.9 -67.4 -46.3 -2.6 4.8 -4.6 5 5 A D H > S+ 0 0 47 2,-0.2 4,-1.9 1,-0.2 -2,-0.2 0.897 112.6 51.1 -60.1 -42.2 0.4 2.8 -5.8 6 6 A F H < S+ 0 0 11 -4,-2.7 5,-0.3 2,-0.2 6,-0.2 0.969 112.2 43.8 -57.7 -59.8 0.2 0.7 -2.6 7 7 A T H >X>S+ 0 0 37 -4,-2.4 4,-2.8 1,-0.2 3,-0.8 0.891 117.0 44.7 -57.3 -48.3 -3.5 -0.2 -2.9 8 8 A Q H 3<5S+ 0 0 141 -4,-2.3 2,-0.3 1,-0.3 -1,-0.2 0.843 108.2 58.5 -68.8 -32.9 -3.4 -0.9 -6.6 9 9 A A T 3<5S+ 0 0 34 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.1 -0.112 126.6 14.1 -88.4 36.4 -0.2 -3.0 -6.4 10 10 A F T <45S- 0 0 52 -3,-0.8 -2,-0.2 -2,-0.3 -3,-0.2 0.192 92.7-120.6-168.7 -52.0 -1.7 -5.4 -3.9 11 11 A G T <5S+ 0 0 72 -4,-2.8 2,-0.3 1,-0.3 -3,-0.1 0.718 76.7 102.8 91.7 28.3 -5.5 -5.1 -3.8 12 12 A M S - 0 0 70 -2,-0.3 4,-1.9 1,-0.1 5,-0.1 -0.477 23.2-131.7 -71.0 144.9 -6.0 -1.2 2.3 14 14 A P H > S+ 0 0 49 0, 0.0 4,-2.5 0, 0.0 -1,-0.1 0.694 109.9 61.1 -68.0 -19.6 -2.9 0.4 3.9 15 15 A A H > S+ 0 0 69 2,-0.2 4,-1.8 1,-0.2 -3,-0.0 0.949 105.8 44.0 -71.0 -48.1 -4.9 0.2 7.2 16 16 A A H > S+ 0 0 46 1,-0.2 4,-0.5 2,-0.2 -1,-0.2 0.896 116.1 49.6 -57.5 -42.4 -5.1 -3.6 7.0 17 17 A F H >< S+ 0 0 8 -4,-1.9 3,-1.5 1,-0.2 -2,-0.2 0.938 107.9 53.0 -59.4 -49.5 -1.4 -3.5 6.0 18 18 A S H 3< S+ 0 0 62 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.795 96.4 68.1 -59.9 -35.5 -0.5 -1.2 8.9 19 19 A A H 3< S+ 0 0 89 -4,-1.8 -1,-0.3 -5,-0.1 -2,-0.2 0.747 87.7 81.4 -57.9 -29.0 -2.1 -3.6 11.4 20 20 A L S << S- 0 0 47 -3,-1.5 2,-0.0 -4,-0.5 -3,-0.0 -0.386 104.3 -81.2 -72.8 158.2 0.6 -6.3 10.7 21 21 A P >> - 0 0 66 0, 0.0 4,-2.1 0, 0.0 3,-0.6 -0.381 45.4-117.9 -55.8 137.3 4.0 -6.0 12.5 22 22 A R H 3> S+ 0 0 147 1,-0.3 4,-2.0 2,-0.2 5,-0.2 0.776 111.0 55.6 -55.2 -35.7 6.1 -3.5 10.5 23 23 A W H 3> S+ 0 0 182 2,-0.2 4,-2.1 3,-0.1 -1,-0.3 0.932 112.5 41.2 -62.4 -46.2 8.8 -6.1 9.5 24 24 A K H <> S+ 0 0 79 -3,-0.6 4,-2.1 2,-0.2 -2,-0.2 0.971 112.1 55.3 -67.1 -57.1 6.2 -8.4 7.9 25 25 A Q H X S+ 0 0 22 -4,-2.1 4,-1.0 1,-0.2 3,-0.3 0.853 113.1 40.5 -34.2 -58.8 4.3 -5.6 6.3 26 26 A Q H X S+ 0 0 78 -4,-2.0 4,-2.3 1,-0.2 3,-0.3 0.879 110.6 58.0 -73.7 -35.9 7.3 -4.2 4.5 27 27 A N H X S+ 0 0 70 -4,-2.1 4,-2.8 1,-0.2 5,-0.3 0.815 99.7 60.5 -59.2 -32.6 8.6 -7.8 3.6 28 28 A L H X S+ 0 0 32 -4,-2.1 4,-1.1 -3,-0.3 -1,-0.2 0.918 112.2 37.2 -57.8 -46.8 5.3 -8.4 1.8 29 29 A K H <>S+ 0 0 17 -4,-1.0 5,-2.3 -3,-0.3 6,-0.5 0.823 119.4 48.6 -76.4 -36.1 6.0 -5.5 -0.6 30 30 A K H ><5S+ 0 0 109 -4,-2.3 3,-1.3 2,-0.2 -2,-0.2 0.891 109.8 49.1 -75.5 -43.3 9.8 -6.2 -0.8 31 31 A E H 3<5S+ 0 0 129 -4,-2.8 -1,-0.2 1,-0.3 -2,-0.2 0.851 109.4 55.0 -65.3 -32.7 9.5 -9.9 -1.5 32 32 A K T 3<5S- 0 0 114 -4,-1.1 -1,-0.3 -5,-0.3 -2,-0.2 0.520 113.2-126.9 -73.3 -7.9 7.0 -9.0 -4.2 33 33 A G T < 5S+ 0 0 66 -3,-1.3 -3,-0.2 1,-0.0 -2,-0.1 0.675 76.0 119.1 72.9 17.4 9.7 -6.7 -5.6 34 34 A L < 0 0 64 -5,-2.3 -4,-0.2 -25,-0.1 -5,-0.1 0.985 360.0 360.0 -77.2 -66.8 7.4 -3.6 -5.6 35 35 A F 0 0 117 -6,-0.5 -5,-0.2 -9,-0.2 -9,-0.0 0.364 360.0 360.0-149.9 360.0 9.3 -1.3 -3.2