==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ACTIN BINDING 09-SEP-03 1UND . COMPND 2 MOLECULE: ADVILLIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR W.VERMEULEN,M.VAN TROYS,P.VANHAESEBROUCK,M.VERSCHUEREN, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2832.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 194 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 39.7 -0.9 -10.7 -2.8 2 2 A L - 0 0 47 0, 0.0 5,-0.1 0, 0.0 0, 0.0 -0.868 360.0 -88.5-172.7 130.6 -3.7 -10.1 -0.2 3 3 A S > - 0 0 77 -2,-0.3 4,-3.1 1,-0.1 5,-0.2 -0.018 42.5-108.4 -44.1 146.9 -7.4 -9.2 -0.5 4 4 A E H > S+ 0 0 64 1,-0.2 4,-1.6 2,-0.2 -1,-0.1 0.751 122.4 45.0 -55.2 -28.6 -8.1 -5.4 -0.6 5 5 A Q H > S+ 0 0 138 2,-0.2 4,-2.1 3,-0.1 -1,-0.2 0.900 112.5 48.0 -80.5 -46.6 -9.6 -5.7 2.9 6 6 A D H > S+ 0 0 98 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.861 110.4 56.6 -58.7 -37.3 -6.8 -7.9 4.3 7 7 A F H >X S+ 0 0 1 -4,-3.1 4,-3.1 2,-0.2 3,-0.6 0.977 105.2 48.9 -54.4 -60.9 -4.5 -5.2 2.7 8 8 A V H 3X S+ 0 0 50 -4,-1.6 4,-2.1 1,-0.3 5,-0.4 0.853 110.1 52.6 -51.6 -38.9 -6.3 -2.5 4.7 9 9 A S H 3< S+ 0 0 99 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.894 120.2 32.7 -62.7 -41.7 -5.8 -4.6 7.9 10 10 A V H << S+ 0 0 74 -4,-2.0 -2,-0.2 -3,-0.6 -1,-0.2 0.749 120.9 49.2 -84.5 -31.8 -2.0 -5.0 7.2 11 11 A F H < S- 0 0 15 -4,-3.1 -3,-0.2 -5,-0.2 -2,-0.2 0.775 94.1-138.2 -87.2 -31.8 -1.4 -1.6 5.5 12 12 A G S < S+ 0 0 68 -4,-2.1 2,-0.2 -5,-0.4 -3,-0.1 0.704 72.3 80.8 81.0 20.8 -3.2 0.5 8.2 13 13 A I S S- 0 0 30 -5,-0.4 -1,-0.3 -6,-0.2 2,-0.3 -0.614 79.4 -95.3-132.6-168.1 -5.0 2.7 5.6 14 14 A T > - 0 0 71 -2,-0.2 4,-2.8 -3,-0.1 5,-0.2 -0.865 22.9-120.7-114.5 157.0 -8.0 2.6 3.3 15 15 A R H > S+ 0 0 147 -2,-0.3 4,-2.0 2,-0.2 5,-0.1 0.837 117.8 51.3 -54.3 -39.0 -8.4 1.7 -0.3 16 16 A G H > S+ 0 0 48 2,-0.2 4,-1.0 1,-0.2 -1,-0.2 0.959 112.4 42.1 -66.6 -54.8 -9.8 5.2 -0.8 17 17 A Q H > S+ 0 0 107 1,-0.2 4,-2.1 2,-0.2 3,-0.2 0.860 113.6 54.3 -62.6 -37.6 -6.8 7.0 0.9 18 18 A F H < S+ 0 0 20 -4,-2.8 -1,-0.2 1,-0.2 -2,-0.2 0.934 106.7 49.9 -62.5 -47.8 -4.4 4.6 -0.9 19 19 A A H < S+ 0 0 72 -4,-2.0 -1,-0.2 1,-0.2 -2,-0.2 0.716 113.1 49.1 -64.9 -19.2 -5.8 5.5 -4.3 20 20 A A H < S+ 0 0 86 -4,-1.0 -2,-0.2 -3,-0.2 -1,-0.2 0.806 94.8 88.6 -85.2 -35.5 -5.4 9.2 -3.3 21 21 A L S < S- 0 0 55 -4,-2.1 5,-0.1 1,-0.1 -3,-0.0 -0.246 98.3 -79.6 -60.6 151.7 -1.8 8.8 -2.1 22 22 A P > - 0 0 68 0, 0.0 4,-2.5 0, 0.0 3,-0.2 -0.192 37.7-116.4 -52.2 144.5 1.0 9.3 -4.8 23 23 A G H > S+ 0 0 49 1,-0.2 4,-2.3 2,-0.2 5,-0.2 0.785 117.1 53.8 -53.9 -31.8 1.6 6.3 -7.1 24 24 A W H > S+ 0 0 150 2,-0.2 4,-3.0 1,-0.2 -1,-0.2 0.939 107.6 46.9 -67.9 -49.9 5.1 6.1 -5.6 25 25 A K H > S+ 0 0 58 -3,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.886 113.3 53.3 -61.6 -34.4 3.9 5.9 -2.0 26 26 A Q H X S+ 0 0 53 -4,-2.5 4,-2.1 2,-0.2 -2,-0.2 0.970 113.3 39.3 -60.2 -57.7 1.4 3.3 -3.3 27 27 A L H X S+ 0 0 109 -4,-2.3 4,-2.6 1,-0.2 5,-0.2 0.867 112.8 58.5 -64.2 -36.7 4.1 1.1 -4.9 28 28 A Q H X S+ 0 0 42 -4,-3.0 4,-2.7 2,-0.2 -1,-0.2 0.943 107.7 45.6 -55.1 -53.9 6.4 1.7 -2.0 29 29 A M H X S+ 0 0 30 -4,-2.4 4,-1.9 2,-0.2 -2,-0.2 0.911 111.5 52.3 -59.4 -46.0 3.9 0.3 0.5 30 30 A K H X S+ 0 0 78 -4,-2.1 4,-0.7 1,-0.2 -2,-0.2 0.946 116.5 39.5 -52.7 -53.1 3.2 -2.7 -1.8 31 31 A K H >X>S+ 0 0 98 -4,-2.6 5,-1.9 1,-0.2 4,-1.8 0.838 108.6 62.3 -66.2 -37.8 6.9 -3.5 -2.0 32 32 A E H 3<5S+ 0 0 103 -4,-2.7 -1,-0.2 1,-0.3 -2,-0.2 0.886 98.9 54.0 -60.5 -43.5 7.6 -2.7 1.7 33 33 A K H 3<5S+ 0 0 83 -4,-1.9 -1,-0.3 -5,-0.1 -2,-0.2 0.806 118.7 40.5 -59.2 -29.5 5.2 -5.5 2.9 34 34 A G H <<5S- 0 0 39 -4,-0.7 -2,-0.2 -3,-0.5 -3,-0.1 0.921 136.4 -70.4 -73.4 -91.6 7.5 -7.6 0.7 35 35 A L T <5 0 0 157 -4,-1.8 -3,-0.3 1,-0.2 -2,-0.1 0.030 360.0 360.0-164.3 31.3 11.1 -6.5 1.2 36 36 A F < 0 0 154 -5,-1.9 -1,-0.2 -8,-0.2 -8,-0.1 0.243 360.0 360.0 68.5 360.0 11.2 -3.0 -0.5