==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER FOUR HELIX BUNDLE 15-SEP-03 1UO1 . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.K.YADAV,J.E.REDMAN,J.M.ALVAREZ-GUTIERREZ,Y.ZHANG, . 62 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5014.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 57 91.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 52 83.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 185 0, 0.0 4,-0.4 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 133.3 70.8 29.3 38.9 2 2 A M > + 0 0 54 1,-0.2 4,-1.6 2,-0.2 35,-0.0 0.522 360.0 58.3 -70.3 -17.2 67.9 29.1 36.5 3 3 A K H > S+ 0 0 93 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.817 100.5 56.3 -88.6 -27.2 66.4 32.3 37.7 4 4 A Q H > S+ 0 0 98 2,-0.2 4,-1.4 1,-0.2 -2,-0.2 0.657 107.3 50.1 -66.8 -22.8 69.5 34.1 36.9 5 5 A I H >> S+ 0 0 79 -4,-0.4 4,-2.5 2,-0.2 3,-0.8 0.978 110.3 49.1 -89.7 -53.7 69.2 32.8 33.3 6 6 A E H 3X S+ 0 0 16 -4,-1.6 4,-1.1 1,-0.3 -1,-0.2 0.705 108.6 52.8 -49.8 -39.6 65.7 33.9 32.9 7 7 A D H 3X S+ 0 0 63 -4,-1.1 4,-1.5 2,-0.2 -1,-0.3 0.847 109.1 48.6 -69.0 -44.9 66.5 37.3 34.2 8 8 A K H X S+ 0 0 78 -4,-2.2 4,-1.6 1,-0.2 3,-0.8 0.995 109.6 50.7 -35.0 -52.9 68.2 40.3 26.4 13 13 A L H 3X S+ 0 0 2 -4,-2.9 4,-1.8 1,-0.3 -2,-0.2 0.863 104.2 57.6 -61.4 -35.5 64.6 40.6 25.2 14 14 A S H 3X S+ 0 0 68 -4,-1.8 4,-2.0 1,-0.2 -1,-0.3 0.852 103.1 51.7 -53.4 -45.9 64.4 44.1 26.2 15 15 A K H < S+ 0 0 141 -4,-1.1 3,-2.4 1,-0.3 -2,-0.2 0.924 103.5 57.4 -81.3 -50.0 61.0 56.6 8.7 29 29 A L H 3< S+ 0 0 141 -4,-2.6 -1,-0.3 1,-0.3 -2,-0.2 0.676 109.5 49.7 -43.4 -31.3 63.9 58.9 8.2 30 30 A L T 3< 0 0 91 -4,-0.8 -1,-0.3 -5,-0.3 -2,-0.2 -0.040 360.0 360.0 -94.8 36.3 64.3 57.0 5.0 31 31 A G < 0 0 104 -3,-2.4 -3,-0.2 -5,-0.0 -2,-0.1 0.516 360.0 360.0 21.8 360.0 60.6 57.4 4.1 32 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 33 1 B R > 0 0 146 0, 0.0 4,-1.9 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -36.2 60.7 27.8 35.0 34 2 B M H > + 0 0 111 2,-0.2 4,-1.2 1,-0.2 5,-0.1 0.782 360.0 55.6 -70.4 -22.1 62.3 25.9 32.3 35 3 B K H > S+ 0 0 147 1,-0.2 4,-0.5 3,-0.1 -1,-0.2 0.926 110.9 46.5 -76.8 -34.1 59.1 26.2 30.4 36 4 B Q H > S+ 0 0 77 2,-0.2 4,-1.2 3,-0.1 -2,-0.2 0.847 112.0 46.4 -50.9 -66.6 59.6 29.9 30.9 37 5 B I H >X S+ 0 0 10 -4,-1.9 4,-2.1 1,-0.2 3,-1.6 0.998 114.1 51.9 -51.1 -65.5 63.3 30.1 29.9 38 6 B E H 3X S+ 0 0 89 -4,-1.2 4,-1.1 1,-0.3 -1,-0.2 0.687 110.3 49.1 -36.2 -31.0 62.4 27.9 26.9 39 7 B D H 3X S+ 0 0 84 -4,-0.5 4,-0.9 2,-0.2 -1,-0.3 0.729 110.7 47.1 -82.5 -27.1 59.6 30.3 25.9 40 8 B K H X S+ 0 0 111 -4,-2.1 4,-2.0 -3,-0.5 3,-1.1 0.901 112.8 53.6 -60.9 -43.1 63.9 45.2 3.3 58 26 B T H 3X S+ 0 0 27 -4,-1.9 4,-2.5 1,-0.3 5,-0.2 0.983 106.0 51.9 -56.7 -45.9 66.0 48.3 4.2 59 27 B K H 3X S+ 0 0 165 -4,-2.9 4,-0.7 1,-0.2 -1,-0.3 0.595 115.3 40.1 -75.9 -7.1 68.9 47.0 2.5 60 28 B K H << S+ 0 0 148 -3,-1.1 -1,-0.2 -4,-0.5 -2,-0.2 0.863 110.6 52.2 -97.6 -52.7 67.0 46.4 -0.7 61 29 B L H < S+ 0 0 134 -4,-2.0 -2,-0.2 1,-0.2 -3,-0.2 0.979 109.8 56.6 -32.4 -66.9 64.9 49.4 -0.9 62 30 B L H < 0 0 115 -4,-2.5 -2,-0.2 -5,-0.4 -1,-0.2 0.858 360.0 360.0 -34.7 -45.3 68.4 51.0 -0.4 63 31 B G < 0 0 99 -4,-0.7 -1,-0.3 -5,-0.2 -2,-0.1 0.051 360.0 360.0 -65.7 360.0 69.5 49.2 -3.5