==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=18-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SH3-DOMAIN 18-DEC-03 1UUE . COMPND 2 MOLECULE: SPECTRIN ALPHA CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR M.C.VEGA,A.FERNANDEZ,M.WILMANNS,L.SERRANO . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4001.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 23 40.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A K 0 0 179 0, 0.0 28,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-140.8 -0.4 0.6 4.3 2 7 A E E -A 28 0A 68 26,-0.6 26,-2.1 25,-0.1 2,-0.4 -0.313 360.0-125.7 -78.8 169.8 2.7 0.1 6.5 3 8 A L E -A 27 0A 78 53,-0.4 53,-2.7 24,-0.2 2,-0.3 -0.948 19.8-163.7-120.6 140.5 2.7 -1.6 9.9 4 9 A V E -AB 26 55A 0 22,-3.4 22,-2.9 -2,-0.4 2,-0.5 -0.933 14.2-134.2-124.9 148.5 4.1 -0.1 13.1 5 10 A L E -AB 25 54A 51 49,-2.8 49,-2.1 -2,-0.3 2,-0.5 -0.883 20.2-128.6-103.7 127.4 4.9 -1.8 16.4 6 11 A A E - B 0 53A 1 18,-2.7 17,-3.2 -2,-0.5 47,-0.3 -0.621 20.2-172.1 -74.7 122.9 3.8 -0.2 19.6 7 12 A L S S+ 0 0 33 45,-2.9 2,-0.3 -2,-0.5 -1,-0.2 0.715 70.3 13.7 -87.3 -24.0 6.8 0.1 21.9 8 13 A Y S S- 0 0 139 44,-0.9 16,-0.1 13,-0.1 2,-0.1 -0.905 87.1 -94.3-143.0 168.4 4.8 1.2 25.0 9 14 A D - 0 0 104 -2,-0.3 12,-0.2 12,-0.2 2,-0.2 -0.420 40.7-174.6 -79.4 164.3 1.1 1.4 26.1 10 15 A Y B -F 20 0B 20 10,-2.4 10,-2.5 -2,-0.1 2,-0.5 -0.745 16.3-154.9-166.6 114.8 -0.7 4.6 25.4 11 16 A Q - 0 0 135 8,-0.2 8,-0.2 -2,-0.2 7,-0.1 -0.809 37.7-105.5 -94.3 128.2 -4.2 5.7 26.4 12 17 A E - 0 0 66 -2,-0.5 7,-0.1 1,-0.1 -1,-0.1 -0.178 33.3-175.3 -48.9 138.7 -5.7 8.4 24.2 13 18 A K + 0 0 148 1,-0.1 -1,-0.1 5,-0.1 -2,-0.0 0.226 65.6 41.4-124.9 11.9 -5.7 11.8 25.9 14 19 A S S > S- 0 0 19 1,-0.0 3,-2.0 4,-0.0 -1,-0.1 -0.982 89.2-104.1-153.8 153.5 -7.5 13.8 23.3 15 20 A P T 3 S+ 0 0 140 0, 0.0 -3,-0.0 0, 0.0 -1,-0.0 0.802 119.5 48.5 -48.8 -37.8 -10.6 13.2 21.0 16 21 A R T 3 S+ 0 0 166 30,-0.1 31,-2.0 2,-0.0 2,-0.1 0.498 98.2 91.5 -85.8 -4.4 -8.4 12.6 17.9 17 22 A E B < -c 47 0A 14 -3,-2.0 2,-0.3 29,-0.3 31,-0.2 -0.346 60.9-146.9 -87.9 169.9 -6.1 10.1 19.6 18 23 A V - 0 0 0 29,-1.9 2,-0.3 28,-0.1 -5,-0.1 -0.943 15.6-117.5-134.9 155.9 -6.3 6.3 19.9 19 24 A T + 0 0 56 -2,-0.3 2,-0.3 -8,-0.2 -8,-0.2 -0.730 31.8 178.2 -97.9 143.7 -5.3 3.8 22.6 20 25 A M B -F 10 0B 4 -10,-2.5 -10,-2.4 -2,-0.3 2,-0.3 -0.989 20.6-137.9-145.7 154.0 -2.7 1.1 22.1 21 26 A K > - 0 0 146 -2,-0.3 3,-2.6 -12,-0.2 -15,-0.3 -0.863 42.0 -89.2-110.9 145.4 -0.9 -1.7 24.0 22 27 A K T 3 S+ 0 0 144 -2,-0.3 -15,-0.2 1,-0.3 3,-0.1 -0.185 116.7 24.5 -49.3 133.9 2.8 -2.6 23.9 23 28 A G T 3 S+ 0 0 41 -17,-3.2 -1,-0.3 1,-0.3 -16,-0.1 0.313 88.0 146.8 90.2 -10.7 3.4 -5.1 21.1 24 29 A D < - 0 0 45 -3,-2.6 -18,-2.7 -16,-0.1 2,-0.8 -0.311 45.9-137.9 -60.3 140.6 0.4 -4.0 19.2 25 30 A I E -A 5 0A 97 -20,-0.2 2,-0.3 -3,-0.1 -20,-0.2 -0.886 28.6-170.8-104.7 104.3 0.7 -4.1 15.4 26 31 A L E -A 4 0A 2 -22,-2.9 -22,-3.4 -2,-0.8 2,-0.7 -0.741 25.6-123.1-103.0 146.2 -0.8 -0.9 14.1 27 32 A T E -AD 3 40A 38 13,-1.5 13,-1.3 -2,-0.3 2,-0.6 -0.744 28.8-135.0 -84.0 116.9 -1.6 0.1 10.5 28 33 A L E +AD 2 39A 3 -26,-2.1 -26,-0.6 -2,-0.7 11,-0.2 -0.643 31.0 170.7 -77.1 116.8 0.2 3.4 9.8 29 34 A L E + 0 0 58 9,-3.1 2,-0.3 -2,-0.6 10,-0.2 0.822 67.1 6.5 -94.4 -39.3 -2.2 5.7 8.0 30 35 A N E + D 0 38A 61 8,-1.7 8,-2.2 1,-0.1 -1,-0.3 -0.932 47.9 166.9-152.4 124.5 -0.3 9.0 8.1 31 36 A S + 0 0 43 -2,-0.3 6,-0.1 6,-0.2 -1,-0.1 0.001 47.2 113.0-124.4 28.1 3.3 9.8 9.2 32 37 A T + 0 0 123 4,-0.0 2,-0.4 2,-0.0 -1,-0.1 0.783 65.9 73.4 -70.5 -28.2 3.7 13.3 7.7 33 38 A N S S- 0 0 72 3,-0.5 17,-0.1 -3,-0.1 -3,-0.0 -0.737 77.0-141.5 -91.8 137.0 3.8 14.8 11.2 34 39 A K S S+ 0 0 180 -2,-0.4 -1,-0.1 1,-0.2 3,-0.1 0.781 96.7 31.4 -67.1 -30.4 7.0 14.4 13.3 35 40 A D S S+ 0 0 95 1,-0.2 15,-2.3 15,-0.1 2,-0.4 0.715 119.9 42.8-103.0 -23.3 5.3 13.9 16.7 36 41 A W E - E 0 49A 85 13,-0.3 -3,-0.5 14,-0.1 2,-0.4 -0.984 58.5-168.2-132.8 130.3 2.0 12.2 15.8 37 42 A W E - E 0 48A 37 11,-2.1 11,-1.4 -2,-0.4 2,-0.4 -0.934 23.0-127.6-115.8 135.3 1.1 9.4 13.4 38 43 A K E +DE 30 47A 65 -8,-2.2 -9,-3.1 -2,-0.4 -8,-1.7 -0.643 40.8 166.6 -80.7 132.7 -2.4 8.4 12.4 39 44 A T E -DE 28 46A 0 7,-2.8 7,-1.6 -2,-0.4 2,-0.5 -0.874 35.1-125.8-141.1 173.2 -3.0 4.7 12.9 40 45 A E E +DE 27 45A 81 -13,-1.3 -13,-1.5 -2,-0.3 2,-0.4 -0.979 25.8 179.3-128.0 117.3 -5.7 2.1 13.0 41 46 A V E > - E 0 44A 5 3,-2.8 3,-2.9 -2,-0.5 -22,-0.1 -0.976 62.6 -38.9-121.6 132.7 -6.0 -0.2 16.0 42 47 A N T 3 S- 0 0 141 -2,-0.4 -1,-0.1 1,-0.3 3,-0.0 0.691 130.8 -21.5 13.9 74.3 -8.7 -2.9 16.4 43 48 A G T 3 S+ 0 0 80 1,-0.1 2,-0.4 -3,-0.0 -1,-0.3 0.348 122.3 78.6 92.3 -7.2 -11.6 -1.1 14.9 44 49 A R E < - E 0 41A 109 -3,-2.9 -3,-2.8 2,-0.0 2,-0.2 -0.987 55.7-145.0-149.5 145.4 -10.5 2.6 15.3 45 50 A Q E + E 0 40A 100 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.588 37.8 115.7 -96.9 157.6 -8.4 5.4 13.9 46 51 A G E - E 0 39A 4 -7,-1.6 -7,-2.8 -2,-0.2 -29,-0.3 -0.886 56.6 -73.6 161.7 170.1 -6.5 8.2 15.7 47 52 A F E -cE 17 38A 55 -31,-2.0 -29,-1.9 -2,-0.3 -9,-0.2 -0.529 35.7-176.5 -91.4 158.2 -3.1 9.6 16.4 48 53 A V E - E 0 37A 0 -11,-1.4 -11,-2.1 -31,-0.2 2,-0.4 -0.940 45.8 -76.7-143.5 159.5 -0.4 8.2 18.7 49 54 A P E > - E 0 36A 14 0, 0.0 3,-2.4 0, 0.0 -13,-0.3 -0.480 37.9-144.0 -63.4 117.5 3.0 9.6 19.7 50 55 A A G > S+ 0 0 8 -15,-2.3 3,-1.6 -2,-0.4 -14,-0.1 0.854 98.6 60.7 -49.5 -39.3 5.3 8.7 16.8 51 56 A A G 3 S+ 0 0 80 -16,-0.4 -1,-0.3 1,-0.3 -15,-0.1 0.652 94.8 63.5 -65.3 -16.2 8.1 8.0 19.2 52 57 A Y G < S+ 0 0 92 -3,-2.4 -45,-2.9 -45,-0.1 -44,-0.9 0.288 101.2 58.2 -93.2 10.9 6.1 5.3 20.8 53 58 A V E < -B 6 0A 10 -3,-1.6 2,-0.4 -47,-0.3 -47,-0.2 -0.969 66.5-144.7-139.5 154.8 6.0 3.1 17.7 54 59 A K E -B 5 0A 122 -49,-2.1 -49,-2.8 -2,-0.3 2,-0.3 -0.956 22.9-119.0-122.3 138.9 8.5 1.5 15.3 55 60 A K E -B 4 0A 77 -2,-0.4 2,-0.7 -51,-0.2 -51,-0.2 -0.559 15.8-156.2 -75.6 134.8 8.2 1.0 11.5 56 61 A L 0 0 81 -53,-2.7 -53,-0.4 -2,-0.3 -1,-0.1 -0.698 360.0 360.0-110.1 75.0 8.2 -2.6 10.4 57 62 A D 0 0 186 -2,-0.7 -1,-0.2 -55,-0.1 -53,-0.0 0.951 360.0 360.0 -88.6 360.0 9.4 -2.1 6.8