==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 21-NOV-03 1V56 . COMPND 2 MOLECULE: SPINOXIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.KOBAYASHI,Y.SUGAHARA,S.NIRTHANAN,I.HUYS, . 34 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2380.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 64.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 23.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 49 0, 0.0 28,-1.9 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 119.8 1.2 2.1 -5.4 2 2 A R B -A 28 0A 147 26,-0.2 26,-0.3 6,-0.2 2,-0.3 -0.529 360.0-176.0 -88.7 162.4 4.8 3.2 -4.8 3 3 A a + 0 0 1 24,-0.9 3,-0.1 -2,-0.2 6,-0.0 -0.977 41.9 179.0-161.1 152.6 6.5 2.5 -1.5 4 4 A S S S- 0 0 83 1,-0.4 2,-0.2 -2,-0.3 3,-0.1 -0.359 93.1 -0.5-135.5 37.0 9.5 2.9 0.6 5 5 A G S > S- 0 0 26 1,-0.1 4,-0.5 2,-0.0 -1,-0.4 -0.671 88.9 -86.8 149.1 157.4 7.9 1.0 3.5 6 6 A S T >4 S+ 0 0 66 1,-0.2 3,-1.5 -2,-0.2 4,-0.5 0.921 126.9 50.3 -60.3 -44.3 4.6 -0.7 4.2 7 7 A R G >> S+ 0 0 165 1,-0.3 3,-0.8 2,-0.2 4,-0.7 0.750 99.3 67.5 -67.5 -20.4 3.0 2.5 5.4 8 8 A D G 34 S+ 0 0 20 -3,-0.4 -1,-0.3 1,-0.2 -2,-0.2 0.731 93.9 60.3 -70.1 -19.3 4.2 4.2 2.2 9 9 A b G S+ 0 0 74 -3,-0.8 4,-3.6 -4,-0.5 5,-0.3 0.823 89.9 64.3 -69.8 -33.7 -1.3 3.3 2.2 11 11 A S H X S+ 0 0 66 -4,-0.7 4,-1.0 2,-0.2 -1,-0.2 0.982 118.4 25.4 -55.2 -58.9 -1.1 6.8 0.8 12 12 A P H > S+ 0 0 23 0, 0.0 4,-1.6 0, 0.0 -2,-0.2 0.877 123.1 55.5 -70.4 -37.3 -1.7 5.7 -2.8 13 13 A c H X>S+ 0 0 0 -4,-2.5 4,-2.3 1,-0.2 6,-1.1 0.888 102.1 56.7 -63.4 -39.4 -3.6 2.6 -1.7 14 14 A M H X5S+ 0 0 124 -4,-3.6 4,-1.2 4,-0.3 -1,-0.2 0.884 105.8 51.3 -57.1 -38.0 -6.0 4.8 0.3 15 15 A K H <5S+ 0 0 153 -4,-1.0 -1,-0.2 -5,-0.3 -2,-0.2 0.874 109.7 52.5 -67.2 -35.5 -6.7 6.6 -2.9 16 16 A Q H <5S- 0 0 116 -4,-1.6 -2,-0.2 1,-0.1 -1,-0.1 0.995 146.1 -34.1 -60.5 -71.9 -7.4 3.2 -4.5 17 17 A T H <5S- 0 0 82 -4,-2.3 -3,-0.2 2,-0.0 -2,-0.2 0.031 88.4 -93.1-144.0 22.1 -9.9 1.7 -2.1 18 18 A G << - 0 0 41 -4,-1.2 -4,-0.3 -5,-0.9 -3,-0.1 0.934 59.3-175.5 61.0 44.3 -8.7 3.1 1.2 19 19 A c + 0 0 1 -6,-1.1 -1,-0.2 1,-0.2 -5,-0.2 -0.660 19.2 178.1 -79.7 116.5 -6.7 0.0 1.8 20 20 A P S S+ 0 0 91 0, 0.0 2,-0.4 0, 0.0 -1,-0.2 0.828 71.4 63.8 -82.9 -34.8 -5.1 0.2 5.3 21 21 A N S S+ 0 0 77 -8,-0.1 12,-0.7 -12,-0.1 11,-0.6 -0.748 70.2 135.7 -90.7 132.3 -3.5 -3.2 4.9 22 22 A A E -B 31 0B 16 -2,-0.4 2,-0.3 10,-0.2 9,-0.1 -0.848 42.9-123.0-157.3-170.8 -0.9 -3.5 2.1 23 23 A K E -B 30 0B 96 7,-0.6 7,-0.7 -2,-0.2 2,-0.6 -0.810 9.0-145.4-156.8 113.2 2.5 -4.9 1.3 24 24 A a E +B 29 0B 37 -2,-0.3 5,-0.2 1,-0.2 -18,-0.1 -0.663 31.4 162.2 -79.8 110.7 5.6 -3.1 0.0 25 25 A I S S- 0 0 100 3,-2.0 -1,-0.2 -2,-0.6 4,-0.2 0.842 72.8 -12.8 -99.4 -49.9 7.2 -5.6 -2.3 26 26 A N S S- 0 0 130 2,-1.3 3,-0.1 0, 0.0 -22,-0.1 -0.414 119.5 -57.0-156.3 61.3 9.6 -3.7 -4.5 27 27 A K S S+ 0 0 133 1,-0.1 -24,-0.9 -25,-0.1 2,-0.3 0.717 129.6 77.9 62.0 22.8 9.0 0.0 -4.2 28 28 A S B -A 2 0A 70 -26,-0.3 -3,-2.0 -5,-0.1 -2,-1.3 -0.955 64.9-162.1-160.3 133.4 5.5 -1.0 -5.3 29 29 A b E -B 24 0B 12 -28,-1.9 2,-0.3 -2,-0.3 -5,-0.2 -0.938 16.0-132.0-120.8 153.5 2.6 -2.6 -3.4 30 30 A K E -B 23 0B 108 -7,-0.7 2,-0.9 -2,-0.4 -7,-0.6 -0.730 38.8-104.7 -98.9 143.8 -0.5 -4.4 -4.3 31 31 A d E > -B 22 0B 25 -2,-0.3 3,-0.5 1,-0.2 -9,-0.2 -0.620 28.7-173.0 -77.1 108.5 -3.7 -3.3 -2.5 32 32 A Y T 3 S+ 0 0 111 -2,-0.9 -10,-0.2 -11,-0.6 -1,-0.2 0.765 86.2 64.5 -65.4 -24.2 -4.6 -5.8 0.2 33 33 A G T 3 0 0 34 -12,-0.7 -1,-0.2 1,-0.2 -11,-0.1 0.862 360.0 360.0 -69.1 -35.7 -7.7 -3.7 0.6 34 34 A d < 0 0 103 -3,-0.5 -1,-0.2 -15,-0.0 -2,-0.2 0.728 360.0 360.0 -63.4 360.0 -8.9 -4.5 -2.9