==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 21-NOV-03 1V5A . COMPND 2 MOLECULE: COVALITOXIN-I; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.KOHNO,T.SASAKI,K.SATO . 28 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2320.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 42.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 226 0, 0.0 15,-0.2 0, 0.0 18,-0.1 0.000 360.0 360.0 360.0 5.9 -4.9 5.6 6.1 2 2 A a - 0 0 47 1,-0.1 16,-0.2 16,-0.1 13,-0.0 -0.037 360.0-110.5 -42.3 146.3 -1.6 5.0 4.2 3 3 A L B -a 18 0A 23 14,-1.4 16,-1.2 13,-0.2 17,-0.7 -0.746 25.4-130.9 -89.9 128.5 -0.5 1.4 4.6 4 4 A P - 0 0 81 0, 0.0 23,-0.1 0, 0.0 3,-0.1 -0.486 41.0 -85.6 -74.3 141.5 2.6 0.8 6.7 5 5 A S S S+ 0 0 80 1,-0.2 23,-0.2 -2,-0.2 3,-0.1 0.075 110.8 60.7 -40.1 159.7 5.2 -1.5 5.0 6 6 A G S S+ 0 0 63 21,-2.0 2,-0.3 1,-0.3 -1,-0.2 0.651 85.5 104.9 90.5 15.6 4.6 -5.2 5.6 7 7 A K S S- 0 0 103 20,-0.5 20,-2.1 -3,-0.1 2,-1.2 -0.844 78.6-108.5-124.8 163.4 1.2 -5.2 3.9 8 8 A A - 0 0 80 -2,-0.3 2,-1.5 18,-0.2 18,-0.3 -0.694 30.9-169.2 -93.0 91.7 -0.0 -6.5 0.5 9 9 A b + 0 0 5 -2,-1.2 2,-0.3 14,-0.1 3,-0.1 -0.591 26.6 148.8 -81.3 90.9 -0.7 -3.3 -1.6 10 10 A A + 0 0 94 -2,-1.5 -1,-0.1 1,-0.2 -2,-0.1 -0.578 48.9 64.1-123.5 71.2 -2.6 -4.8 -4.6 11 11 A G > - 0 0 27 -2,-0.3 3,-1.3 3,-0.0 -1,-0.2 -0.038 51.0-170.8 175.4 65.7 -5.0 -2.2 -5.7 12 12 A V T 3 S+ 0 0 151 1,-0.3 2,-0.2 -3,-0.1 -2,-0.0 0.804 92.3 63.4 -39.3 -28.9 -3.5 1.1 -7.1 13 13 A T T 3 S+ 0 0 135 3,-0.0 -1,-0.3 4,-0.0 2,-0.1 -0.081 82.7 124.9 -89.8 38.6 -7.2 2.3 -7.0 14 14 A Q S < S- 0 0 64 -3,-1.3 -3,-0.0 -2,-0.2 -5,-0.0 -0.243 78.4-101.0 -87.2-178.6 -7.3 1.9 -3.2 15 15 A K S S+ 0 0 190 1,-0.3 -13,-0.1 -14,-0.1 -1,-0.1 0.932 104.3 10.5 -71.3 -43.5 -8.3 4.6 -0.7 16 16 A I S S- 0 0 57 -15,-0.2 -1,-0.3 -3,-0.0 -13,-0.2 -0.999 74.6-131.7-140.6 139.5 -4.7 5.3 0.3 17 17 A P - 0 0 88 0, 0.0 -14,-1.4 0, 0.0 2,-0.4 -0.006 55.8 -56.3 -74.4-176.3 -1.3 4.3 -1.2 18 18 A c B -a 3 0A 9 -16,-0.2 4,-0.2 1,-0.2 -16,-0.1 -0.483 43.0-133.9 -66.8 122.1 1.7 2.9 0.7 19 19 A a S S+ 0 0 85 -16,-1.2 -1,-0.2 -2,-0.4 -17,-0.1 0.875 107.9 20.2 -44.2 -31.3 2.6 5.4 3.5 20 20 A G S S- 0 0 49 -17,-0.7 2,-0.4 1,-0.0 -2,-0.1 0.530 132.3 -53.5-102.5-107.3 6.0 4.6 2.0 21 21 A S - 0 0 68 5,-0.1 7,-2.1 -4,-0.1 2,-0.6 -0.958 43.0-134.0-142.7 123.7 6.0 3.2 -1.5 22 22 A b E +B 27 0B 55 -2,-0.4 2,-0.4 5,-0.2 5,-0.2 -0.620 36.8 165.4 -78.2 117.9 4.1 0.1 -2.7 23 23 A V E > +B 26 0B 81 3,-2.0 3,-1.2 -2,-0.6 -14,-0.1 -0.990 59.8 7.3-134.9 142.3 6.4 -2.1 -4.7 24 24 A R T 3 S- 0 0 225 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.880 128.9 -63.4 58.5 36.0 6.0 -5.8 -5.9 25 25 A G T 3 S+ 0 0 38 1,-0.2 2,-0.4 -3,-0.1 -1,-0.3 0.831 120.5 108.7 59.9 28.2 2.4 -5.7 -4.6 26 26 A K E < S-B 23 0B 115 -3,-1.2 -3,-2.0 -18,-0.3 -18,-0.2 -0.926 77.6-120.5-140.5 116.4 4.0 -5.1 -1.1 27 27 A c E B 22 0B 0 -20,-2.1 -21,-2.0 -2,-0.4 -20,-0.5 -0.312 360.0 360.0 -53.5 113.4 3.9 -1.9 0.9 28 28 A S 0 0 81 -7,-2.1 -1,-0.2 -23,-0.2 -6,-0.1 0.097 360.0 360.0-111.1 360.0 7.7 -1.1 1.3