==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL TRANSPORT 06-SEP-07 2VB3 . COMPND 2 MOLECULE: CATION EFFLUX SYSTEM PROTEIN CUSF; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR Y.XUE,A.V.DAVIS,G.BALAKRISHNAN,J.P.STASSER,B.M.STAEHLIN,P.FO . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4842.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 51 68.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 34 45.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 9.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 13 X P 0 0 124 0, 0.0 2,-0.2 0, 0.0 60,-0.1 0.000 360.0 360.0 360.0 -98.8 2.9 -7.8 6.6 2 14 X Q - 0 0 129 58,-0.1 60,-0.5 60,-0.0 2,-0.4 -0.800 360.0-143.3 81.5 58.9 5.8 -8.3 5.2 3 15 X V - 0 0 80 -2,-0.2 2,-0.5 58,-0.1 58,-0.2 -0.745 18.0-150.6 -84.6 134.3 5.9 -6.5 1.9 4 16 X I E -A 60 0A 8 56,-3.5 56,-2.0 -2,-0.4 2,-0.4 -0.950 3.5-150.5-119.4 126.5 7.8 -8.5 -0.7 5 17 X S E +A 59 0A 89 -2,-0.5 2,-0.3 54,-0.2 54,-0.2 -0.778 25.6 159.7 -92.6 133.2 9.8 -7.1 -3.6 6 18 X A E -A 58 0A 12 52,-2.6 52,-2.6 -2,-0.4 2,-0.3 -0.900 26.8-140.8-142.3 170.0 10.2 -9.0 -6.8 7 19 X T E +A 57 0A 63 -2,-0.3 18,-1.5 50,-0.2 2,-0.3 -0.852 34.9 126.9-126.4 164.3 11.0 -8.5 -10.5 8 20 X G E -AB 56 24A 2 48,-1.7 48,-2.7 -2,-0.3 2,-0.4 -0.982 50.9 -79.4 175.1-165.2 9.5 -10.1 -13.6 9 21 X V E -AB 55 23A 30 14,-2.0 14,-2.7 -2,-0.3 2,-0.4 -0.993 41.1-115.4-130.1 133.0 7.8 -9.7 -17.0 10 22 X V E + B 0 22A 0 44,-3.2 43,-3.8 -2,-0.4 12,-0.2 -0.554 33.1 173.4 -73.1 121.1 4.2 -8.9 -17.6 11 23 X K E - 0 0 113 10,-2.7 2,-0.3 -2,-0.4 11,-0.2 0.699 66.5 -8.9 -99.5 -25.5 2.4 -11.8 -19.4 12 24 X G E - B 0 21A 21 9,-1.5 9,-2.9 39,-0.1 2,-0.4 -0.934 55.7-154.6-170.7 147.6 -1.2 -10.5 -19.2 13 25 X I E + B 0 20A 54 -2,-0.3 2,-0.4 7,-0.2 7,-0.2 -0.998 10.3 176.3-132.0 133.3 -3.3 -7.7 -17.6 14 26 X D E >> + B 0 19A 67 5,-2.8 5,-1.9 -2,-0.4 4,-1.2 -0.847 9.0 177.8-139.2 102.9 -6.9 -7.6 -16.8 15 27 X L T 45S+ 0 0 130 -2,-0.4 -1,-0.1 3,-0.2 5,-0.1 0.601 85.1 58.5 -77.1 -12.5 -8.3 -4.5 -15.0 16 28 X E T 45S+ 0 0 169 1,-0.1 -1,-0.2 3,-0.1 -2,-0.1 0.949 116.1 29.9 -79.0 -56.9 -11.8 -6.1 -15.2 17 29 X S T 45S- 0 0 69 2,-0.1 -2,-0.2 1,-0.0 -1,-0.1 0.591 110.4-125.5 -78.9 -10.9 -11.0 -9.3 -13.3 18 30 X K T <5 + 0 0 110 -4,-1.2 23,-2.7 1,-0.3 2,-0.3 0.786 65.6 126.2 73.5 35.6 -8.3 -7.3 -11.4 19 31 X K E < -BC 14 40A 58 -5,-1.9 -5,-2.8 21,-0.2 2,-0.4 -0.873 41.5-167.0-122.0 150.8 -5.5 -9.6 -12.1 20 32 X I E -BC 13 39A 0 19,-2.3 19,-2.8 -2,-0.3 2,-0.5 -0.984 16.9-143.7-135.3 126.7 -2.1 -9.2 -13.6 21 33 X T E -BC 12 38A 35 -9,-2.9 -10,-2.7 -2,-0.4 -9,-1.5 -0.812 22.5-176.3 -93.4 127.4 -0.1 -12.2 -14.7 22 34 X I E -BC 10 37A 0 15,-2.8 15,-2.8 -2,-0.5 2,-1.0 -0.992 26.5-147.3-127.0 126.2 3.6 -11.9 -14.1 23 35 X H E -BC 9 36A 51 -14,-2.7 -14,-2.0 -2,-0.4 13,-0.3 -0.844 39.9-169.2 -81.4 103.5 6.4 -14.3 -15.0 24 36 X H E -BC 8 35A 0 11,-2.6 11,-1.5 -2,-1.0 -16,-0.3 -0.666 23.4-114.3-105.7 155.1 8.7 -13.6 -12.1 25 37 X D - 0 0 74 -18,-1.5 10,-0.1 -2,-0.3 -18,-0.1 -0.199 61.9 -63.5 -68.0 165.5 12.3 -14.4 -11.1 26 38 X P - 0 0 93 0, 0.0 2,-0.3 0, 0.0 -19,-0.2 -0.156 44.8-154.0 -55.9 153.9 12.8 -16.6 -8.0 27 39 X I B > > +G 32 0B 8 5,-3.4 5,-2.2 6,-0.1 3,-1.6 -0.786 15.4 178.2-132.2 89.7 11.6 -15.3 -4.6 28 40 X A T 3 5S+ 0 0 101 -2,-0.3 3,-0.4 1,-0.3 -1,-0.1 0.738 75.5 75.9 -63.7 -25.0 13.6 -16.8 -1.7 29 41 X A T 3 5S+ 0 0 67 1,-0.2 -1,-0.3 -24,-0.2 -2,-0.0 0.784 116.9 16.7 -55.9 -29.8 11.6 -14.7 0.7 30 42 X V T < 5S- 0 0 37 -3,-1.6 -1,-0.2 2,-0.1 -2,-0.2 0.158 112.3-107.7-133.5 17.7 8.7 -17.2 0.2 31 43 X N T 5 + 0 0 146 -3,-0.4 -3,-0.2 -4,-0.4 -2,-0.1 0.830 66.2 148.6 63.4 39.1 10.5 -20.1 -1.4 32 44 X W B < -G 27 0B 52 -5,-2.2 -5,-3.4 -7,-0.1 -1,-0.2 -0.903 32.3-154.2-102.9 132.6 9.2 -19.6 -4.9 33 45 X P - 0 0 81 0, 0.0 2,-0.3 0, 0.0 -6,-0.1 -0.061 55.2 -46.7 -79.8-168.4 11.3 -20.6 -8.0 34 46 X E S S+ 0 0 126 -8,-0.1 2,-0.3 -11,-0.1 -9,-0.2 -0.501 82.8 152.8 -59.0 123.6 10.8 -19.0 -11.4 35 47 X M E -C 24 0A 62 -11,-1.5 -11,-2.6 -2,-0.3 2,-0.6 -0.998 50.2-120.3-157.5 158.0 7.1 -19.0 -12.1 36 48 X T E +C 23 0A 82 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.3 -0.887 46.0 172.4 -98.6 118.5 4.2 -17.3 -13.9 37 49 X M E -C 22 0A 40 -15,-2.8 -15,-2.8 -2,-0.6 2,-0.5 -0.960 35.2-119.9-134.4 149.7 1.7 -16.2 -11.3 38 50 X R E -C 21 0A 177 -2,-0.3 2,-0.4 -17,-0.2 29,-0.3 -0.761 28.1-166.1 -84.4 125.7 -1.5 -14.1 -11.0 39 51 X F E -C 20 0A 0 -19,-2.8 -19,-2.3 -2,-0.5 2,-0.3 -0.896 17.9-126.6-111.9 143.3 -1.2 -11.2 -8.8 40 52 X T E -Cd 19 68A 15 27,-2.6 29,-2.7 -2,-0.4 2,-0.3 -0.709 19.9-157.0 -93.2 144.6 -4.3 -9.3 -7.6 41 53 X I - 0 0 14 -23,-2.7 29,-0.1 -2,-0.3 27,-0.0 -0.913 7.6-169.1-119.1 146.0 -4.7 -5.6 -8.1 42 54 X T > - 0 0 46 27,-0.4 3,-1.0 -2,-0.3 -24,-0.0 -0.720 44.3 -98.4-122.0 171.4 -6.9 -3.2 -6.1 43 55 X P T 3 S+ 0 0 115 0, 0.0 -2,-0.0 0, 0.0 -1,-0.0 0.665 126.0 56.8 -59.3 -11.7 -8.0 0.4 -6.6 44 56 X Q T 3 S+ 0 0 150 25,-0.1 2,-0.3 2,-0.1 -3,-0.0 0.488 74.8 112.0-101.3 -11.4 -5.2 1.0 -4.1 45 57 X T S < S- 0 0 12 -3,-1.0 2,-0.7 1,-0.1 26,-0.2 -0.531 72.8-126.0 -62.9 124.3 -2.3 -0.6 -6.0 46 58 X K E -e 71 0A 160 24,-2.3 26,-2.0 -2,-0.3 2,-0.3 -0.690 39.3-170.6 -78.1 112.7 0.1 2.2 -7.0 47 59 X M E -e 72 0A 76 -2,-0.7 2,-0.3 24,-0.2 26,-0.1 -0.779 27.4-168.2-112.5 145.3 0.4 1.8 -10.8 48 60 X S - 0 0 60 24,-1.1 2,-0.7 -2,-0.3 23,-0.0 -0.676 57.0 -79.8-104.1 171.0 2.5 3.2 -13.5 49 61 X E + 0 0 147 -2,-0.3 2,-0.4 25,-0.0 25,-0.1 -0.693 60.7 178.4 -78.0 117.8 1.4 2.3 -17.0 50 62 X I - 0 0 13 -2,-0.7 2,-0.3 23,-0.1 3,-0.0 -0.948 10.5-162.9-123.0 140.9 2.5 -1.2 -17.7 51 63 X K > - 0 0 114 -2,-0.4 3,-2.1 1,-0.1 -41,-0.3 -0.835 37.0 -81.4-116.9 158.4 1.9 -3.3 -20.9 52 64 X T T 3 S+ 0 0 90 -2,-0.3 -41,-0.2 1,-0.3 3,-0.1 -0.273 119.2 29.5 -48.0 138.4 2.2 -7.0 -21.6 53 65 X G T 3 S+ 0 0 46 -43,-3.8 -1,-0.3 1,-0.3 2,-0.2 0.386 91.6 135.3 83.2 -3.9 5.8 -7.9 -22.3 54 66 X D < - 0 0 47 -3,-2.1 -44,-3.2 -44,-0.1 2,-0.5 -0.527 57.6-125.9 -76.7 145.7 7.1 -5.2 -20.0 55 67 X K E -A 9 0A 131 -46,-0.2 20,-2.9 -2,-0.2 2,-0.3 -0.797 40.8-171.0 -88.7 129.3 9.8 -5.8 -17.5 56 68 X V E -AF 8 74A 1 -48,-2.7 -48,-1.7 -2,-0.5 2,-0.4 -0.902 30.9-150.5-132.4 150.3 8.6 -4.8 -14.1 57 69 X A E +AF 7 73A 21 16,-2.5 16,-2.3 -2,-0.3 2,-0.3 -0.967 34.7 174.9-112.0 134.4 9.6 -4.2 -10.5 58 70 X F E -AF 6 72A 3 -52,-2.6 -52,-2.6 -2,-0.4 2,-0.4 -0.988 28.6-148.0-145.8 153.4 6.8 -4.8 -8.0 59 71 X N E +AF 5 71A 38 12,-2.0 11,-2.7 -2,-0.3 12,-1.3 -0.940 26.8 164.4-113.3 140.9 5.8 -5.0 -4.3 60 72 X F E -AF 4 69A 0 -56,-2.0 -56,-3.5 -2,-0.4 2,-0.3 -0.979 22.6-148.6-149.5 159.1 3.2 -7.3 -2.9 61 73 X V E - F 0 68A 6 7,-2.1 7,-2.2 -2,-0.3 2,-0.5 -0.882 20.2-125.7-122.6 159.8 1.9 -8.8 0.3 62 74 X Q E + F 0 67A 83 -60,-0.5 2,-0.3 -2,-0.3 5,-0.2 -0.914 38.1 147.2-109.6 131.9 0.3 -12.2 1.0 63 75 X Q E > - F 0 66A 129 3,-1.7 3,-1.1 -2,-0.5 2,-0.2 -0.872 67.4 -11.5-160.4 136.5 -3.0 -12.6 2.8 64 76 X G T 3 S- 0 0 85 -2,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.497 119.6 -49.1 67.8-147.0 -5.5 -15.4 2.1 65 77 X N T 3 S+ 0 0 161 -2,-0.2 2,-0.3 -3,-0.1 -1,-0.2 0.167 117.7 106.2 -96.6 12.9 -4.6 -17.3 -1.1 66 78 X L E < - F 0 63A 66 -3,-1.1 -3,-1.7 -27,-0.0 2,-0.6 -0.696 60.0-154.7 -92.2 144.4 -4.3 -13.8 -2.7 67 79 X S E - F 0 62A 9 -2,-0.3 -27,-2.6 -29,-0.3 2,-0.5 -0.940 24.7-159.2-114.9 104.3 -1.0 -12.2 -3.6 68 80 X L E -dF 40 61A 20 -7,-2.2 -7,-2.1 -2,-0.6 2,-0.2 -0.764 10.0-132.6-104.4 121.3 -1.9 -8.5 -3.6 69 81 X L E - F 0 60A 1 -29,-2.7 -27,-0.4 -2,-0.5 -9,-0.3 -0.452 18.2-177.2 -72.0 131.4 0.1 -5.8 -5.4 70 82 X Q E S- 0 0 88 -11,-2.7 -24,-2.3 1,-0.4 2,-0.3 0.752 74.0 -17.9 -98.8 -32.3 1.0 -2.7 -3.4 71 83 X D E -eF 46 59A 45 -12,-1.3 -12,-2.0 -26,-0.2 -1,-0.4 -0.965 56.3-163.9-163.5 168.8 2.7 -1.1 -6.4 72 84 X I E +eF 47 58A 1 -26,-2.0 -24,-1.1 -2,-0.3 2,-0.3 -0.947 11.8 171.4-159.0 130.5 4.2 -1.9 -9.8 73 85 X K E - F 0 57A 114 -16,-2.3 -16,-2.5 -2,-0.3 2,-0.3 -0.924 38.5 -92.8-139.0 161.6 6.5 0.1 -12.2 74 86 X V E F 0 56A 72 -2,-0.3 -18,-0.3 -18,-0.2 -25,-0.0 -0.593 360.0 360.0 -77.5 135.1 8.5 -0.5 -15.4 75 87 X S 0 0 103 -20,-2.9 -19,-0.2 -2,-0.3 -1,-0.2 0.548 360.0 360.0-100.4 360.0 12.1 -1.6 -15.0