==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 23-MAR-04 1VDL . COMPND 2 MOLECULE: UBIQUITIN CARBOXYL-TERMINAL HYDROLASE 25; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR Y.DOI-KATAYAMA,H.HIROTA,K.SAITO,S.KOSHIBA,T.KIGAWA, . 80 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7262.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 56.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 11.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 36.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 136 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-160.6 -15.8 19.2 12.9 2 2 A S + 0 0 110 2,-0.0 3,-0.4 0, 0.0 0, 0.0 0.924 360.0 172.7 -88.4 -58.6 -17.0 16.6 10.4 3 3 A S - 0 0 110 1,-0.2 2,-1.3 0, 0.0 0, 0.0 0.280 52.1 -76.6 63.5 161.8 -20.7 17.1 10.4 4 4 A G S S+ 0 0 88 3,-0.0 2,-0.3 0, 0.0 -1,-0.2 -0.522 77.9 145.7 -93.2 66.0 -23.1 15.4 8.0 5 5 A S + 0 0 82 -2,-1.3 0, 0.0 -3,-0.4 0, 0.0 -0.720 44.1 18.7-103.5 154.3 -22.4 17.6 5.0 6 6 A S S S- 0 0 90 -2,-0.3 2,-0.6 1,-0.1 3,-0.1 0.491 73.8-117.1 64.0 144.7 -22.3 16.5 1.4 7 7 A G S S- 0 0 63 1,-0.2 -1,-0.1 0, 0.0 -3,-0.0 -0.878 72.2 -44.7-121.0 97.8 -24.0 13.4 0.2 8 8 A M S S+ 0 0 200 -2,-0.6 2,-0.3 1,-0.1 -1,-0.2 0.929 82.8 167.1 43.7 89.6 -21.7 10.8 -1.3 9 9 A T > - 0 0 68 -3,-0.1 3,-0.6 3,-0.0 2,-0.5 -0.942 46.5-129.9-132.7 153.6 -19.4 13.0 -3.5 10 10 A V T 3 S+ 0 0 123 -2,-0.3 4,-0.3 1,-0.2 3,-0.2 -0.318 85.4 96.3 -95.9 48.5 -16.1 12.4 -5.3 11 11 A E T 3 S+ 0 0 156 -2,-0.5 -1,-0.2 1,-0.1 4,-0.1 0.282 74.2 60.5-116.3 4.2 -14.7 15.6 -3.9 12 12 A Q S < S+ 0 0 124 -3,-0.6 -1,-0.1 2,-0.1 -2,-0.1 -0.258 102.0 48.7-126.0 43.5 -12.9 13.9 -1.0 13 13 A N S >> S+ 0 0 98 -3,-0.2 4,-1.1 2,-0.0 3,-0.8 0.433 87.9 71.7-143.5 -47.3 -10.6 11.6 -2.9 14 14 A V T 34 S+ 0 0 107 -4,-0.3 3,-0.1 1,-0.3 -2,-0.1 0.765 99.4 58.7 -48.6 -26.0 -8.8 13.6 -5.6 15 15 A L T 3> S+ 0 0 78 1,-0.2 4,-0.9 3,-0.1 -1,-0.3 0.930 90.0 67.1 -69.8 -47.6 -7.0 15.1 -2.7 16 16 A Q H <> S+ 0 0 99 -3,-0.8 4,-2.8 3,-0.2 5,-0.4 0.841 81.9 98.4 -39.4 -43.3 -5.7 11.7 -1.6 17 17 A Q H < S- 0 0 147 -4,-1.1 2,-3.2 1,-0.2 -4,-0.0 -0.184 103.2 -8.3 -50.7 137.3 -3.6 11.8 -4.8 18 18 A S H > S+ 0 0 66 1,-0.2 4,-2.3 3,-0.0 -1,-0.2 -0.371 124.2 76.4 71.9 -66.0 -0.1 12.9 -4.1 19 19 A A H < S+ 0 0 52 -2,-3.2 -1,-0.2 -4,-0.9 -2,-0.2 0.828 102.9 41.6 -41.5 -38.0 -0.9 13.8 -0.6 20 20 A A T < S+ 0 0 27 -4,-2.8 -1,-0.3 -5,-0.2 6,-0.2 0.898 104.4 63.6 -77.4 -43.9 -0.8 10.1 -0.0 21 21 A Q T 4 S+ 0 0 118 -5,-0.4 2,-1.5 1,-0.3 -2,-0.2 0.817 94.5 67.6 -48.6 -33.9 2.3 9.6 -2.2 22 22 A K S < S+ 0 0 146 -4,-2.3 -1,-0.3 1,-0.1 2,-0.2 -0.609 75.9 103.9 -91.1 75.2 4.1 11.8 0.4 23 23 A H > - 0 0 112 -2,-1.5 4,-2.3 1,-0.1 3,-0.1 -0.685 53.1-161.0-158.8 96.8 3.9 9.3 3.3 24 24 A Q H >> S+ 0 0 91 1,-0.3 4,-2.7 2,-0.2 3,-0.8 0.910 98.0 50.2 -40.9 -59.9 7.0 7.4 4.3 25 25 A Q H 3> S+ 0 0 131 1,-0.3 4,-2.9 2,-0.2 5,-0.3 0.906 110.0 50.3 -46.2 -51.2 4.9 4.9 6.1 26 26 A T H 3> S+ 0 0 49 1,-0.2 4,-1.3 2,-0.2 -1,-0.3 0.826 111.8 51.0 -57.8 -33.2 2.7 4.5 3.1 27 27 A F H X S+ 0 0 66 -4,-1.3 4,-2.5 -5,-0.3 3,-0.6 0.947 113.9 40.8 -66.8 -51.0 4.0 -0.2 -0.3 31 31 A L H 3X S+ 0 0 0 -4,-3.0 4,-1.1 1,-0.2 6,-0.7 0.614 106.2 70.9 -72.0 -12.3 7.4 -1.7 -0.8 32 32 A R H 3< S+ 0 0 120 -4,-1.6 -1,-0.2 -5,-0.3 -2,-0.2 0.896 111.3 25.9 -69.9 -42.1 6.4 -4.1 1.9 33 33 A E H << S+ 0 0 168 -4,-1.2 -2,-0.2 -3,-0.6 -3,-0.1 0.906 117.2 60.6 -86.1 -50.2 4.0 -5.9 -0.3 34 34 A I H < S+ 0 0 82 -4,-2.5 -3,-0.2 1,-0.3 -2,-0.1 0.924 127.5 16.2 -39.7 -71.8 5.6 -5.1 -3.7 35 35 A T S < S- 0 0 42 -4,-1.1 -1,-0.3 -5,-0.1 -2,-0.2 0.602 103.3-130.4 -79.8 -12.9 8.8 -6.9 -2.8 36 36 A G + 0 0 52 -5,-0.3 -3,-0.2 1,-0.2 -4,-0.2 0.407 56.6 150.9 77.1 -2.7 7.0 -8.6 0.1 37 37 A I - 0 0 26 -6,-0.7 -1,-0.2 1,-0.1 -2,-0.1 -0.142 28.1-176.8 -58.1 157.3 9.9 -7.5 2.2 38 38 A N + 0 0 115 -3,-0.1 -1,-0.1 -5,-0.0 5,-0.1 0.651 49.7 97.8-122.4 -51.6 9.2 -6.8 5.9 39 39 A D > - 0 0 84 1,-0.1 4,-1.4 2,-0.1 5,-0.1 -0.081 59.5-151.7 -43.7 139.3 12.4 -5.5 7.4 40 40 A A H > S+ 0 0 52 2,-0.2 4,-3.5 1,-0.2 5,-0.5 0.786 93.5 64.8 -85.9 -32.1 12.4 -1.8 7.7 41 41 A Q H 4 S+ 0 0 147 1,-0.2 4,-0.5 2,-0.2 -1,-0.2 0.689 111.5 39.0 -63.3 -18.2 16.2 -1.5 7.4 42 42 A I H > S+ 0 0 67 2,-0.1 4,-1.9 3,-0.1 -1,-0.2 0.815 116.6 47.7 -97.3 -43.0 15.7 -3.0 3.9 43 43 A L H X S+ 0 0 3 -4,-1.4 4,-2.3 2,-0.2 -2,-0.2 0.943 117.3 43.2 -63.2 -49.7 12.6 -1.1 2.9 44 44 A Q H X S+ 0 0 81 -4,-3.5 4,-4.0 2,-0.2 5,-0.3 0.947 108.7 57.6 -60.6 -51.9 14.0 2.2 4.1 45 45 A Q H > S+ 0 0 83 -4,-0.5 4,-2.5 -5,-0.5 -1,-0.2 0.876 109.5 46.5 -45.3 -45.6 17.4 1.5 2.6 46 46 A A H X S+ 0 0 1 -4,-1.9 4,-3.3 2,-0.2 -1,-0.3 0.942 114.8 46.2 -63.3 -49.7 15.6 1.2 -0.7 47 47 A L H X>S+ 0 0 33 -4,-2.3 4,-2.5 2,-0.2 5,-1.1 0.963 111.3 51.8 -56.7 -56.5 13.6 4.3 -0.2 48 48 A K H <5S+ 0 0 149 -4,-4.0 3,-0.4 2,-0.2 -2,-0.2 0.929 114.4 43.4 -44.2 -58.9 16.6 6.3 0.9 49 49 A D H <5S+ 0 0 79 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.969 111.9 51.2 -51.4 -63.7 18.5 5.2 -2.2 50 50 A S H <5S- 0 0 11 -4,-3.3 -1,-0.3 1,-0.2 -2,-0.2 0.787 104.2-137.9 -44.7 -30.6 15.6 5.8 -4.5 51 51 A N T <5S- 0 0 149 -4,-2.5 -3,-0.2 -3,-0.4 -1,-0.2 0.561 80.2 -28.3 79.1 9.3 15.5 9.2 -2.8 52 52 A G S - 0 0 80 -6,-0.4 4,-2.3 -7,-0.2 -1,-0.2 -0.965 38.8-169.0-127.5 113.8 11.1 6.6 -5.7 54 54 A L H > S+ 0 0 44 -2,-0.5 4,-3.4 2,-0.2 5,-0.4 0.960 91.4 56.8 -62.3 -53.6 9.1 3.4 -5.3 55 55 A E H > S+ 0 0 159 1,-0.3 4,-2.3 2,-0.2 -1,-0.2 0.840 113.6 42.1 -45.6 -38.7 10.0 2.2 -8.8 56 56 A L H > S+ 0 0 67 2,-0.2 4,-3.1 1,-0.2 -1,-0.3 0.844 111.6 54.2 -77.5 -36.4 13.6 2.6 -7.8 57 57 A A H X S+ 0 0 0 -4,-2.3 4,-1.2 2,-0.2 -2,-0.2 0.832 115.5 40.6 -65.4 -33.0 12.9 1.1 -4.3 58 58 A V H X S+ 0 0 28 -4,-3.4 4,-4.5 2,-0.2 5,-0.3 0.881 114.2 51.7 -80.9 -42.7 11.4 -1.9 -6.1 59 59 A A H X S+ 0 0 41 -4,-2.3 4,-2.8 -5,-0.4 -2,-0.2 0.928 112.9 45.8 -58.8 -47.6 14.1 -2.0 -8.8 60 60 A F H < S+ 0 0 58 -4,-3.1 -1,-0.2 2,-0.2 -2,-0.2 0.884 118.0 43.2 -62.6 -41.0 16.8 -2.0 -6.2 61 61 A L H >X S+ 0 0 7 -4,-1.2 4,-2.7 -5,-0.2 3,-0.9 0.920 115.1 48.6 -70.4 -45.8 15.0 -4.6 -4.2 62 62 A T H 3< S+ 0 0 68 -4,-4.5 2,-0.7 1,-0.3 -2,-0.2 0.860 106.9 57.7 -61.5 -37.3 14.2 -6.7 -7.2 63 63 A A T 3< S+ 0 0 79 -4,-2.8 -1,-0.3 -5,-0.3 -2,-0.1 -0.243 116.8 34.2 -88.5 45.2 17.8 -6.4 -8.3 64 64 A K T <4 S+ 0 0 134 -3,-0.9 2,-0.6 -2,-0.7 -2,-0.2 0.256 118.4 40.1-157.4 -52.6 18.9 -8.0 -5.1 65 65 A N S < S+ 0 0 133 -4,-2.7 2,-0.3 -5,-0.1 -2,-0.0 -0.872 76.8 138.0-117.1 96.2 16.4 -10.5 -3.9 66 66 A A - 0 0 76 -2,-0.6 2,-0.1 -3,-0.1 -3,-0.0 -0.791 57.0 -78.0-130.5 172.7 15.1 -12.6 -6.8 67 67 A K - 0 0 200 -2,-0.3 -1,-0.0 1,-0.1 -2,-0.0 -0.433 53.0-106.5 -72.9 146.5 14.3 -16.2 -7.6 68 68 A T - 0 0 110 1,-0.1 -1,-0.1 -2,-0.1 0, 0.0 -0.254 38.2 -99.6 -70.2 160.5 17.2 -18.5 -8.4 69 69 A P - 0 0 90 0, 0.0 2,-2.8 0, 0.0 -1,-0.1 -0.168 47.4 -81.6 -75.0 172.7 17.9 -19.7 -11.9 70 70 A P S S+ 0 0 144 0, 0.0 2,-0.2 0, 0.0 -2,-0.0 -0.380 80.1 145.6 -75.0 64.0 16.9 -23.1 -13.3 71 71 A Q - 0 0 154 -2,-2.8 2,-0.9 1,-0.1 -3,-0.0 -0.490 62.6 -80.7 -98.1 170.0 19.9 -24.8 -11.7 72 72 A E S S+ 0 0 184 -2,-0.2 2,-0.3 2,-0.0 -1,-0.1 -0.616 87.8 90.2 -74.9 105.6 20.3 -28.3 -10.3 73 73 A E S S- 0 0 175 -2,-0.9 2,-0.2 0, 0.0 0, 0.0 -0.945 73.5 -85.5 177.9 167.1 18.8 -28.1 -6.8 74 74 A T + 0 0 120 -2,-0.3 -3,-0.1 1,-0.1 -2,-0.0 -0.532 53.6 129.5 -89.1 156.8 15.7 -28.4 -4.7 75 75 A S - 0 0 109 -2,-0.2 -1,-0.1 2,-0.0 0, 0.0 0.113 55.9-119.8-165.2 -61.5 13.1 -25.7 -4.2 76 76 A G - 0 0 60 2,-0.0 -2,-0.0 0, 0.0 0, 0.0 0.729 22.8-138.6 99.3 96.9 9.6 -26.8 -4.9 77 77 A P - 0 0 135 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.129 15.4-151.4 -75.0 175.8 7.6 -25.0 -7.6 78 78 A S + 0 0 114 0, 0.0 2,-0.3 0, 0.0 -2,-0.0 -0.985 18.3 161.3-149.7 154.8 3.9 -24.0 -7.4 79 79 A S 0 0 118 -2,-0.3 0, 0.0 1,-0.1 0, 0.0 -0.969 360.0 360.0-164.6 169.0 1.0 -23.5 -9.6 80 80 A G 0 0 132 -2,-0.3 -1,-0.1 0, 0.0 0, 0.0 0.596 360.0 360.0-100.7 360.0 -2.8 -23.2 -9.8