==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-JUL-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NUCLEAR PROTEIN 03-JUL-08 2VXD . COMPND 2 MOLECULE: NUCLEOPHOSMIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.BYCROFT,C.G.GRUMMITT . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4187.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 68.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 34 63.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 142 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -91.3 -5.5 -8.4 -13.8 2 2 A G > + 0 0 24 3,-0.0 4,-1.8 4,-0.0 3,-0.1 0.690 360.0 179.1-121.1 -44.7 -3.3 -6.2 -11.6 3 3 A S H > - 0 0 98 2,-0.2 4,-1.3 1,-0.2 3,-0.0 -0.099 60.2 -50.3 66.1-169.6 -2.5 -8.1 -8.4 4 4 A V H > S+ 0 0 39 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.862 137.4 60.5 -67.1 -37.1 -0.3 -6.7 -5.7 5 5 A E H > S+ 0 0 152 1,-0.2 4,-2.5 2,-0.2 -1,-0.2 0.896 103.0 50.6 -57.8 -43.0 2.4 -5.7 -8.2 6 6 A D H X S+ 0 0 81 -4,-1.8 4,-2.3 1,-0.2 -1,-0.2 0.882 109.8 50.9 -63.6 -38.8 -0.1 -3.4 -10.0 7 7 A I H X S+ 0 0 15 -4,-1.3 4,-2.5 2,-0.2 -2,-0.2 0.909 111.2 47.3 -65.4 -43.2 -1.0 -1.7 -6.7 8 8 A K H X S+ 0 0 47 -4,-2.4 4,-2.4 2,-0.2 -2,-0.2 0.910 113.3 48.4 -64.9 -43.0 2.6 -1.1 -5.9 9 9 A A H X S+ 0 0 59 -4,-2.5 4,-2.3 2,-0.2 -2,-0.2 0.890 112.0 49.5 -64.5 -40.4 3.3 0.3 -9.3 10 10 A K H X S+ 0 0 137 -4,-2.3 4,-2.4 2,-0.2 5,-0.2 0.936 112.2 46.6 -64.7 -47.4 0.3 2.5 -9.2 11 11 A M H X S+ 0 0 7 -4,-2.5 4,-2.3 1,-0.2 -2,-0.2 0.904 113.6 49.4 -61.8 -41.2 1.2 3.9 -5.8 12 12 A Q H X S+ 0 0 58 -4,-2.4 4,-2.9 2,-0.2 -1,-0.2 0.885 109.0 53.3 -65.0 -38.7 4.7 4.5 -6.9 13 13 A A H X S+ 0 0 52 -4,-2.3 4,-2.2 2,-0.2 -2,-0.2 0.933 111.2 44.8 -61.7 -47.1 3.5 6.2 -10.0 14 14 A S H < S+ 0 0 72 -4,-2.4 -1,-0.2 2,-0.2 -2,-0.2 0.875 114.1 50.8 -64.7 -37.5 1.4 8.6 -8.0 15 15 A I H >X S+ 0 0 40 -4,-2.3 4,-1.4 3,-0.2 3,-1.1 0.905 112.5 45.1 -66.4 -43.1 4.3 9.1 -5.6 16 16 A E H 3< S+ 0 0 152 -4,-2.9 -2,-0.2 1,-0.3 -1,-0.2 0.830 115.2 48.1 -70.1 -32.8 6.7 9.9 -8.4 17 17 A K T 3< S- 0 0 191 -4,-2.2 -1,-0.3 -5,-0.2 -2,-0.2 0.220 145.1 -59.7 -91.8 14.1 4.1 12.2 -10.1 18 18 A G T <4 S+ 0 0 67 -3,-1.1 2,-0.2 1,-0.1 -3,-0.2 0.793 94.2 116.7 107.0 74.0 3.5 13.9 -6.8 19 19 A G < - 0 0 31 -4,-1.4 2,-0.3 -7,-0.1 -4,-0.1 -0.839 38.7-149.4-150.6-172.8 2.2 11.7 -4.0 20 20 A S - 0 0 107 -2,-0.2 -4,-0.0 -9,-0.0 -6,-0.0 -0.959 12.3-133.8-166.7 148.6 2.9 10.2 -0.6 21 21 A L - 0 0 19 -2,-0.3 7,-0.1 30,-0.1 -2,-0.0 -0.921 35.3-104.1-112.9 133.4 2.1 7.1 1.5 22 22 A P - 0 0 35 0, 0.0 6,-0.1 0, 0.0 9,-0.0 -0.243 18.6-149.8 -53.9 132.5 0.9 7.2 5.1 23 23 A K S S+ 0 0 140 4,-0.1 2,-0.4 5,-0.0 3,-0.1 0.581 72.9 94.7 -80.6 -10.1 3.7 6.3 7.6 24 24 A V S > S- 0 0 53 1,-0.1 4,-3.0 2,-0.0 5,-0.2 -0.698 71.4-144.5 -86.6 131.1 1.1 4.9 10.0 25 25 A E H > S+ 0 0 93 -2,-0.4 4,-2.9 1,-0.2 5,-0.2 0.917 102.9 44.0 -58.2 -46.2 0.5 1.1 9.7 26 26 A A H > S+ 0 0 69 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.884 116.5 46.2 -68.1 -38.4 -3.2 1.5 10.4 27 27 A K H > S+ 0 0 137 2,-0.2 4,-2.2 1,-0.2 -2,-0.2 0.861 114.6 48.9 -71.6 -34.3 -3.6 4.5 8.1 28 28 A F H X S+ 0 0 0 -4,-3.0 4,-3.1 2,-0.2 5,-0.4 0.936 111.2 48.4 -69.0 -47.3 -1.6 2.6 5.5 29 29 A I H X S+ 0 0 36 -4,-2.9 4,-2.4 1,-0.2 5,-0.3 0.887 113.0 49.2 -59.8 -40.3 -3.7 -0.5 5.8 30 30 A N H X S+ 0 0 96 -4,-2.1 4,-1.9 3,-0.2 5,-0.2 0.894 114.4 44.5 -67.3 -40.9 -6.9 1.6 5.6 31 31 A Y H X S+ 0 0 50 -4,-2.2 4,-2.5 2,-0.2 5,-0.3 0.954 121.2 37.2 -69.1 -51.5 -5.6 3.5 2.5 32 32 A V H X S+ 0 0 2 -4,-3.1 4,-2.8 2,-0.2 6,-1.3 0.920 121.9 45.0 -66.7 -45.7 -4.3 0.4 0.6 33 33 A K H X S+ 0 0 87 -4,-2.4 4,-0.6 -5,-0.4 -3,-0.2 0.887 120.8 39.3 -66.1 -41.2 -7.1 -1.9 1.8 34 34 A N H < S+ 0 0 127 -4,-1.9 -2,-0.2 -5,-0.3 -1,-0.2 0.832 122.7 41.5 -78.2 -34.9 -9.8 0.7 1.1 35 35 A C H < S+ 0 0 91 -4,-2.5 -3,-0.2 -5,-0.2 -2,-0.2 0.886 133.9 19.5 -80.3 -42.6 -8.3 1.9 -2.1 36 36 A F H < S- 0 0 55 -4,-2.8 -3,-0.2 -5,-0.3 -2,-0.2 0.213 101.7-116.8-112.5 13.1 -7.2 -1.4 -3.6 37 37 A R < + 0 0 219 -4,-0.6 2,-2.8 1,-0.2 -4,-0.2 0.740 53.7 166.3 58.3 21.1 -9.5 -3.7 -1.5 38 38 A M + 0 0 15 -6,-1.3 -1,-0.2 1,-0.2 -5,-0.1 -0.397 13.6 144.9 -69.7 73.3 -6.3 -5.1 -0.1 39 39 A T + 0 0 91 -2,-2.8 2,-0.5 -6,-0.2 -1,-0.2 0.328 33.9 111.1 -93.7 6.3 -8.0 -6.9 2.7 40 40 A D > - 0 0 100 1,-0.1 4,-3.2 -3,-0.1 5,-0.2 -0.705 66.0-143.4 -85.9 127.3 -5.6 -9.8 2.6 41 41 A Q H > S+ 0 0 140 -2,-0.5 4,-2.4 1,-0.2 -1,-0.1 0.841 103.8 52.0 -56.3 -33.7 -3.3 -10.1 5.6 42 42 A E H > S+ 0 0 151 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.934 112.4 43.2 -68.7 -46.5 -0.6 -11.3 3.2 43 43 A A H > S+ 0 0 16 2,-0.2 4,-3.1 1,-0.2 -2,-0.2 0.888 115.4 50.3 -65.8 -39.2 -1.0 -8.4 0.8 44 44 A I H X S+ 0 0 18 -4,-3.2 4,-2.8 2,-0.2 5,-0.2 0.907 110.7 48.9 -65.3 -42.8 -1.3 -6.0 3.8 45 45 A Q H X S+ 0 0 99 -4,-2.4 4,-2.8 -5,-0.2 -2,-0.2 0.921 116.0 43.0 -63.0 -45.0 1.9 -7.4 5.3 46 46 A D H X S+ 0 0 92 -4,-2.4 4,-2.1 2,-0.2 -2,-0.2 0.914 115.9 48.0 -67.5 -43.9 3.8 -7.1 2.0 47 47 A L H X S+ 0 0 0 -4,-3.1 4,-2.1 2,-0.2 -2,-0.2 0.884 115.1 46.0 -64.9 -37.6 2.3 -3.7 1.3 48 48 A W H X S+ 0 0 24 -4,-2.8 4,-2.3 2,-0.2 -2,-0.2 0.921 110.5 52.2 -70.5 -43.2 3.2 -2.6 4.8 49 49 A Q H X S+ 0 0 127 -4,-2.8 4,-1.3 1,-0.2 -2,-0.2 0.867 110.1 51.0 -59.6 -35.3 6.7 -4.1 4.5 50 50 A W H X S+ 0 0 57 -4,-2.1 4,-1.7 2,-0.2 3,-0.2 0.917 107.8 50.8 -68.0 -44.2 7.1 -2.1 1.3 51 51 A R H < S+ 0 0 58 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.856 108.9 52.7 -61.5 -35.4 6.0 1.1 3.0 52 52 A K H < S+ 0 0 118 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.813 117.8 36.8 -70.2 -30.4 8.6 0.5 5.7 53 53 A S H < 0 0 103 -4,-1.3 -2,-0.2 -3,-0.2 -1,-0.2 0.553 360.0 360.0 -96.1 -12.0 11.2 0.1 3.1 54 54 A L < 0 0 98 -4,-1.7 -33,-0.1 -5,-0.1 -4,-0.0 -0.627 360.0 360.0 -74.0 360.0 9.8 2.8 0.9