==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 01-SEP-04 1WPD . COMPND 2 MOLECULE: MTX-HSTX1; . SOURCE 2 ORGANISM_SCIENTIFIC: SCORPIO MAURUS PALMATUS, HETEROMETRUS . AUTHOR I.REGAYA,C.BEETON,G.FERRAT,N.ANDREOTTI,G.K.CHANDY,H.DARBON, . 34 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3099.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 121 0, 0.0 2,-0.5 0, 0.0 23,-0.4 0.000 360.0 360.0 360.0 139.8 -7.5 2.0 -6.5 2 2 A S - 0 0 111 19,-0.1 2,-0.2 21,-0.1 19,-0.1 -0.861 360.0-167.2-103.4 130.3 -6.5 5.2 -4.6 3 3 A a + 0 0 38 -2,-0.5 3,-0.1 1,-0.1 22,-0.0 -0.603 20.4 176.7-109.0 171.4 -7.6 5.8 -1.1 4 4 A T + 0 0 149 -2,-0.2 2,-0.3 1,-0.1 -1,-0.1 0.079 55.6 91.2-164.1 31.0 -7.5 8.9 1.2 5 5 A G + 0 0 61 2,-0.0 2,-0.2 0, 0.0 -1,-0.1 -0.670 65.7 68.0-137.6 82.3 -9.3 7.9 4.4 6 6 A S S S- 0 0 68 -2,-0.3 21,-0.0 -3,-0.1 0, 0.0 -0.824 89.3 -77.9-163.8-158.2 -6.9 6.6 7.1 7 7 A K S S- 0 0 190 -2,-0.2 -2,-0.0 1,-0.0 0, 0.0 -0.247 98.5 -53.2-117.4 42.2 -4.1 7.5 9.5 8 8 A D S S+ 0 0 117 3,-0.1 -1,-0.0 4,-0.0 -4,-0.0 0.943 80.8 151.4 85.0 75.2 -1.3 7.5 6.9 9 9 A b > + 0 0 34 2,-0.1 4,-1.6 3,-0.1 5,-0.3 0.885 69.5 47.6 -96.0 -65.6 -1.4 4.1 5.1 10 10 A Y H > S+ 0 0 41 1,-0.2 4,-2.7 2,-0.2 5,-0.1 0.732 111.6 59.7 -50.6 -23.8 -0.0 4.7 1.6 11 11 A A H > S+ 0 0 26 2,-0.2 4,-2.0 1,-0.2 5,-0.2 0.995 103.1 43.0 -70.6 -67.5 2.8 6.5 3.4 12 12 A P H > S+ 0 0 79 0, 0.0 4,-0.5 0, 0.0 -2,-0.2 0.755 125.8 40.0 -51.2 -25.3 4.3 3.8 5.7 13 13 A c H >X S+ 0 0 32 -4,-1.6 4,-2.9 2,-0.2 3,-0.8 0.883 104.1 62.5 -90.7 -47.8 3.9 1.4 2.7 14 14 A R H 3X S+ 0 0 115 -4,-2.7 4,-0.5 -5,-0.3 -3,-0.2 0.848 100.1 58.9 -47.4 -35.9 5.0 3.7 -0.1 15 15 A K H 3< S+ 0 0 160 -4,-2.0 -1,-0.3 2,-0.2 -2,-0.2 0.948 116.4 32.8 -58.3 -48.2 8.4 3.8 1.7 16 16 A Q H << S+ 0 0 169 -3,-0.8 -2,-0.2 -4,-0.5 -1,-0.1 0.976 134.9 25.8 -71.1 -61.1 8.6 0.1 1.3 17 17 A T H < S- 0 0 25 -4,-2.9 2,-0.6 1,-0.2 -3,-0.2 0.953 92.8-154.3 -70.8 -53.3 6.8 -0.5 -2.0 18 18 A G < + 0 0 23 -4,-0.5 -1,-0.2 -5,-0.4 -2,-0.1 -0.929 53.9 87.7 120.9-111.4 7.4 2.9 -3.6 19 19 A d S S- 0 0 15 -2,-0.6 -1,-0.2 1,-0.2 13,-0.2 0.271 82.8-111.2 -25.1 147.0 4.9 4.2 -6.2 20 20 A P S S+ 0 0 64 0, 0.0 -1,-0.2 0, 0.0 -6,-0.1 0.534 86.8 108.1 -66.1 -6.1 1.9 6.2 -4.8 21 21 A Y - 0 0 145 -19,-0.1 11,-1.0 -7,-0.1 2,-0.3 -0.201 48.1-177.0 -69.6 164.9 -0.4 3.3 -5.9 22 22 A G B -A 31 0A 3 -21,-0.3 9,-0.3 9,-0.3 10,-0.2 -0.989 38.0-136.9-161.2 155.9 -2.0 0.9 -3.4 23 23 A K + 0 0 126 7,-1.7 2,-0.5 -2,-0.3 8,-0.2 0.108 55.7 142.7-101.5 20.2 -4.2 -2.2 -3.1 24 24 A a + 0 0 7 -23,-0.4 2,-0.4 5,-0.1 5,-0.2 -0.491 23.2 172.4 -66.7 115.6 -6.2 -0.5 -0.4 25 25 A M B > -B 28 0B 114 3,-2.0 3,-1.5 -2,-0.5 -2,-0.1 -0.951 47.0 -20.9-126.8 144.3 -9.8 -1.6 -0.8 26 26 A N T 3 S- 0 0 126 -2,-0.4 -23,-0.0 1,-0.3 0, 0.0 0.062 119.1 -36.5 50.6-169.9 -12.7 -1.0 1.6 27 27 A R T 3 S+ 0 0 241 1,-0.1 2,-0.7 -3,-0.1 -1,-0.3 0.373 125.8 93.6 -64.5 8.6 -12.0 -0.2 5.1 28 28 A K B < -B 25 0B 118 -3,-1.5 -3,-2.0 2,-0.0 -1,-0.1 -0.878 68.6-155.7-110.0 100.4 -9.3 -2.7 4.5 29 29 A b + 0 0 38 -2,-0.7 -5,-0.1 -5,-0.2 -2,-0.0 -0.206 22.3 161.0 -69.8 164.3 -6.0 -1.0 3.5 30 30 A K - 0 0 120 0, 0.0 -7,-1.7 0, 0.0 -20,-0.0 -0.187 29.5-136.5 172.1 85.3 -3.3 -2.8 1.5 31 31 A c B -A 22 0A 39 -9,-0.3 -9,-0.3 -8,-0.2 2,-0.1 0.280 32.1 -94.4 -39.9 170.8 -0.6 -0.9 -0.3 32 32 A N - 0 0 57 -11,-1.0 2,-0.6 -13,-0.2 -1,-0.1 -0.234 27.9-111.6 -86.1 178.8 0.5 -1.8 -3.8 33 33 A R 0 0 220 1,-0.2 -11,-0.1 -2,-0.1 -16,-0.0 -0.832 360.0 360.0-118.9 90.4 3.3 -4.0 -5.0 34 34 A d 0 0 107 -2,-0.6 -1,-0.2 -15,-0.1 -16,-0.1 0.952 360.0 360.0 -82.9 360.0 5.9 -1.9 -6.8