==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 27-SEP-04 1WQB . COMPND 2 MOLECULE: APTOTOXIN VII; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.KOBAYASHI,J.-I.KIM,K.SATO,T.KOHNO . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2922.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 56.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A W 0 0 302 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 87.5 -7.5 7.1 -11.5 2 2 A L - 0 0 188 1,-0.2 2,-0.2 0, 0.0 0, 0.0 0.865 360.0-102.7-100.3 -58.2 -4.2 8.1 -10.0 3 3 A G - 0 0 64 16,-0.0 2,-0.3 0, 0.0 -1,-0.2 -0.688 50.3 -54.9 171.0-112.5 -2.1 4.9 -9.5 4 4 A a - 0 0 48 -2,-0.2 14,-0.2 1,-0.1 16,-0.0 -0.931 56.6 -73.4-151.5 175.0 -1.5 2.9 -6.3 5 5 A A B -a 18 0A 5 12,-1.2 14,-0.7 -2,-0.3 2,-0.2 -0.069 47.1-140.0 -65.9 175.5 -0.2 3.2 -2.7 6 6 A R > - 0 0 158 12,-0.1 3,-0.8 13,-0.0 23,-0.2 -0.504 35.6 -78.9-124.4-164.6 3.6 3.6 -2.1 7 7 A V T 3 S+ 0 0 55 1,-0.2 21,-0.1 -2,-0.2 -2,-0.0 0.281 131.2 38.4 -84.3 15.5 6.2 2.4 0.4 8 8 A K T 3 S+ 0 0 155 22,-0.1 2,-0.3 2,-0.0 -1,-0.2 0.209 93.2 103.7-145.3 12.7 5.0 4.9 2.9 9 9 A E S < S- 0 0 85 -3,-0.8 20,-1.9 20,-0.1 2,-0.6 -0.733 75.6-109.5-101.8 150.4 1.2 4.9 2.4 10 10 A A B +B 28 0B 53 -2,-0.3 18,-0.2 18,-0.2 2,-0.2 -0.644 52.2 156.1 -79.3 119.0 -1.4 3.2 4.7 11 11 A b - 0 0 12 16,-2.2 3,-0.1 -2,-0.6 12,-0.0 -0.598 16.8-175.6-128.6-168.5 -2.8 0.1 2.9 12 12 A G - 0 0 19 4,-0.8 12,-0.3 -2,-0.2 6,-0.2 -0.853 48.1 -63.6-165.0-159.6 -4.5 -3.1 3.9 13 13 A P S S- 0 0 115 0, 0.0 -1,-0.1 0, 0.0 11,-0.0 0.954 124.0 -10.5 -72.6 -52.7 -5.9 -6.4 2.6 14 14 A W S S+ 0 0 237 -3,-0.1 -3,-0.0 3,-0.1 0, 0.0 -0.042 120.0 81.6-139.5 34.9 -8.8 -4.9 0.6 15 15 A E S S+ 0 0 130 1,-0.3 -4,-0.0 0, 0.0 -1,-0.0 0.709 102.9 15.8-109.9 -31.9 -8.9 -1.3 1.6 16 16 A W S S- 0 0 137 -4,-0.1 -4,-0.8 -12,-0.0 2,-0.6 -0.853 71.4-140.6-148.8 109.4 -6.1 0.2 -0.6 17 17 A P - 0 0 104 0, 0.0 -12,-1.2 0, 0.0 -3,-0.1 -0.545 24.0-154.0 -71.0 115.3 -4.6 -1.6 -3.6 18 18 A c B -a 5 0A 27 -2,-0.6 -12,-0.1 -14,-0.2 3,-0.1 -0.305 26.4 -87.6 -83.1 173.3 -0.8 -1.0 -3.6 19 19 A a > - 0 0 46 -14,-0.7 3,-0.8 1,-0.1 2,-0.7 0.088 61.7 -70.9 -66.6-170.3 1.4 -1.1 -6.7 20 20 A S T 3 S+ 0 0 121 1,-0.2 -1,-0.1 3,-0.0 3,-0.1 -0.758 122.0 24.1 -90.4 114.4 3.0 -4.3 -7.9 21 21 A G T 3 S+ 0 0 35 -2,-0.7 2,-0.6 1,-0.2 -1,-0.2 0.360 97.1 104.4 115.8 -2.9 5.7 -5.5 -5.6 22 22 A L < - 0 0 35 -3,-0.8 2,-0.5 9,-0.2 -1,-0.2 -0.928 46.5-173.9-114.9 118.9 4.5 -3.7 -2.4 23 23 A K E -C 30 0C 90 7,-0.9 7,-1.6 -2,-0.6 2,-0.6 -0.914 38.5-104.0-113.0 134.0 2.8 -5.8 0.3 24 24 A b E -C 29 0C 45 -2,-0.5 2,-1.7 -12,-0.3 5,-0.2 -0.306 33.5-161.9 -54.1 101.7 1.2 -4.2 3.4 25 25 A D S S- 0 0 79 3,-1.1 3,-0.3 -2,-0.6 2,-0.3 -0.339 72.4 -49.5 -85.3 59.6 3.9 -5.0 6.0 26 26 A G S S- 0 0 73 -2,-1.7 -1,-0.1 1,-0.2 -2,-0.1 -0.347 124.5 -23.3 107.7 -53.6 1.6 -4.4 9.0 27 27 A S S S+ 0 0 80 1,-0.3 -16,-2.2 -2,-0.3 2,-0.6 0.353 125.2 63.8-159.2 -36.6 0.2 -1.0 7.9 28 28 A E B S-B 10 0B 83 -3,-0.3 -3,-1.1 -18,-0.2 -1,-0.3 -0.884 88.3-110.5-105.9 123.8 2.6 0.8 5.5 29 29 A c E -C 24 0C 0 -20,-1.9 -5,-0.2 -2,-0.6 -20,-0.1 -0.176 40.6-155.9 -48.0 134.4 3.2 -0.8 2.1 30 30 A H E -C 23 0C 63 -7,-1.6 2,-1.1 -22,-0.1 -7,-0.9 -0.744 28.4-106.7-114.8 165.6 6.8 -2.1 2.0 31 31 A P 0 0 94 0, 0.0 -9,-0.2 0, 0.0 -2,-0.1 -0.179 360.0 360.0 -81.5 43.8 9.3 -2.8 -0.8 32 32 A Q 0 0 184 -2,-1.1 -10,-0.1 -9,-0.2 -11,-0.0 -0.317 360.0 360.0 50.8 360.0 8.9 -6.6 -0.3