==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 14-MAY-05 1X4Q . COMPND 2 MOLECULE: U4/U6 SMALL NUCLEAR RIBONUCLEOPROTEIN PRP3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.HE,Y.MUTO,M.INOUE,T.KIGAWA,M.SHIROUZU,T.TERADA,S.YOKOYAMA, . 92 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6669.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 66 71.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 16 17.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 42 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 138 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-135.1 -14.9 15.0 -4.9 2 2 A S - 0 0 125 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.661 360.0-120.9-119.2 175.6 -12.3 12.3 -5.5 3 3 A S - 0 0 121 -2,-0.2 0, 0.0 1,-0.2 0, 0.0 -0.807 16.5-133.6-117.8 159.4 -9.4 11.8 -7.9 4 4 A G - 0 0 75 -2,-0.3 2,-0.5 1,-0.0 -1,-0.2 0.358 44.5 -71.5 -85.1-140.8 -8.6 9.1 -10.5 5 5 A S S S+ 0 0 91 1,-0.1 -1,-0.0 2,-0.1 45,-0.0 -0.785 75.8 122.3-126.3 88.0 -5.4 7.2 -11.1 6 6 A S S S- 0 0 135 -2,-0.5 -1,-0.1 0, 0.0 -3,-0.0 0.752 86.9 -66.3-110.6 -45.1 -2.7 9.5 -12.6 7 7 A G + 0 0 50 -3,-0.2 41,-0.1 42,-0.1 -2,-0.1 0.321 55.5 167.6 150.3 65.3 0.2 9.4 -10.2 8 8 A M - 0 0 125 40,-0.1 38,-0.1 37,-0.1 37,-0.0 0.980 27.1-168.8 -59.2 -60.8 -0.3 10.9 -6.8 9 9 A A - 0 0 49 36,-0.4 2,-0.3 40,-0.1 37,-0.2 0.645 15.4-120.9 72.2 127.0 2.9 9.5 -5.2 10 10 A L - 0 0 17 36,-0.4 2,-0.1 35,-0.1 -1,-0.0 -0.691 20.7-121.2-100.3 153.5 3.5 9.7 -1.5 11 11 A S > - 0 0 53 -2,-0.3 4,-2.9 1,-0.1 5,-0.4 -0.445 34.1 -97.4 -88.8 164.4 6.4 11.3 0.3 12 12 A K H > S+ 0 0 145 1,-0.2 4,-1.4 2,-0.2 -1,-0.1 0.881 129.1 41.3 -45.4 -45.3 8.9 9.7 2.6 13 13 A R H > S+ 0 0 145 2,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.921 110.4 56.9 -70.8 -45.5 6.9 11.0 5.5 14 14 A E H >> S+ 0 0 36 1,-0.2 3,-0.6 2,-0.2 4,-0.5 0.921 113.4 39.9 -51.4 -49.7 3.5 10.2 3.9 15 15 A L H >X S+ 0 0 15 -4,-2.9 4,-2.6 1,-0.2 3,-1.2 0.819 100.2 75.7 -70.4 -31.5 4.5 6.5 3.5 16 16 A D H 3< S+ 0 0 90 -4,-1.4 -1,-0.2 -5,-0.4 -2,-0.2 0.856 95.3 50.5 -47.4 -39.6 6.1 6.5 7.0 17 17 A E H << S+ 0 0 80 -4,-1.2 -1,-0.3 -3,-0.6 4,-0.3 0.803 110.2 49.9 -70.3 -29.6 2.6 6.5 8.4 18 18 A L H XX S+ 0 0 1 -3,-1.2 4,-2.7 -4,-0.5 3,-1.4 0.847 93.9 74.4 -76.9 -35.8 1.7 3.5 6.2 19 19 A K H >X S+ 0 0 63 -4,-2.6 4,-2.7 1,-0.3 3,-0.5 0.914 103.9 37.8 -40.1 -60.0 4.8 1.5 7.2 20 20 A P H 34 S+ 0 0 77 0, 0.0 4,-0.4 0, 0.0 -1,-0.3 0.625 117.0 55.1 -69.8 -13.1 3.4 0.7 10.6 21 21 A W H <> S+ 0 0 40 -3,-1.4 4,-0.8 -4,-0.3 -2,-0.2 0.719 114.6 36.8 -91.1 -25.4 -0.0 0.3 8.9 22 22 A I H S+ 0 0 132 -4,-0.4 4,-1.1 -5,-0.2 3,-0.4 0.898 115.2 49.4 -79.5 -44.0 0.6 -5.1 10.8 25 25 A T H >X S+ 0 0 18 -4,-0.8 4,-2.7 1,-0.2 3,-1.7 0.971 102.9 58.5 -59.4 -57.8 -1.8 -5.8 8.0 26 26 A V H 3X S+ 0 0 0 -4,-2.9 4,-2.1 1,-0.3 7,-0.7 0.791 105.7 54.1 -42.8 -31.5 0.5 -8.0 6.0 27 27 A K H 3> S+ 0 0 125 -4,-0.4 4,-1.6 -3,-0.4 -1,-0.3 0.855 110.2 44.1 -73.5 -36.3 0.6 -10.1 9.2 28 28 A R H << S+ 0 0 217 -3,-1.7 -2,-0.2 -4,-1.1 -1,-0.2 0.833 114.6 49.8 -76.8 -34.2 -3.2 -10.4 9.3 29 29 A V H < S+ 0 0 17 -4,-2.7 -2,-0.2 1,-0.1 -3,-0.2 0.932 130.1 19.4 -69.9 -47.5 -3.5 -11.1 5.6 30 30 A L H < S- 0 0 30 -4,-2.1 -2,-0.2 -5,-0.3 -3,-0.2 0.732 97.3-133.8 -93.6 -27.7 -0.9 -13.9 5.6 31 31 A G S < S+ 0 0 57 -4,-1.6 -4,-0.2 -5,-0.4 -3,-0.1 0.177 97.7 53.2 93.7 -18.0 -1.0 -14.6 9.3 32 32 A F S S- 0 0 121 -6,-0.4 -5,-0.2 2,-0.0 -4,-0.1 0.636 100.1-130.6-117.2 -30.6 2.8 -14.6 9.6 33 33 A S - 0 0 30 -7,-0.7 -6,-0.2 -6,-0.2 -10,-0.1 0.640 13.4-136.1 79.1 123.0 3.7 -11.3 8.0 34 34 A E > - 0 0 76 1,-0.1 4,-1.7 -8,-0.0 3,-0.1 -0.934 7.0-154.5-116.5 134.2 6.4 -11.0 5.3 35 35 A P H > S+ 0 0 91 0, 0.0 4,-1.5 0, 0.0 5,-0.2 0.885 97.8 54.9 -69.8 -40.6 9.1 -8.3 5.2 36 36 A T H > S+ 0 0 63 1,-0.2 4,-1.5 2,-0.2 25,-0.1 0.763 109.2 50.5 -65.0 -25.0 9.6 -8.6 1.4 37 37 A V H > S+ 0 0 0 2,-0.2 4,-1.6 24,-0.2 -1,-0.2 0.903 100.9 59.7 -79.2 -44.7 5.9 -7.9 1.0 38 38 A V H X S+ 0 0 10 -4,-1.7 4,-2.2 1,-0.2 -2,-0.2 0.894 112.3 40.9 -50.2 -45.1 5.7 -4.9 3.3 39 39 A T H X S+ 0 0 91 -4,-1.5 4,-2.3 2,-0.2 5,-0.3 0.944 108.3 58.0 -70.1 -49.7 8.2 -3.1 1.0 40 40 A A H X S+ 0 0 4 -4,-1.5 4,-0.9 1,-0.2 -1,-0.2 0.747 112.8 45.0 -52.5 -23.6 6.7 -4.4 -2.3 41 41 A A H X S+ 0 0 0 -4,-1.6 4,-1.9 2,-0.2 5,-0.4 0.916 106.5 54.0 -86.1 -51.8 3.5 -2.7 -1.1 42 42 A L H X S+ 0 0 23 -4,-2.2 4,-1.4 1,-0.2 -2,-0.2 0.835 111.5 49.8 -52.0 -34.6 5.0 0.6 0.1 43 43 A N H X S+ 0 0 81 -4,-2.3 4,-2.4 2,-0.2 6,-0.3 0.918 107.1 53.8 -71.6 -45.1 6.5 1.0 -3.3 44 44 A C H ><>S+ 0 0 0 -4,-0.9 5,-2.1 -5,-0.3 3,-0.7 0.975 114.8 37.7 -52.6 -65.8 3.3 0.2 -5.2 45 45 A V H ><5S+ 0 0 11 -4,-1.9 3,-1.2 1,-0.3 -36,-0.4 0.848 117.1 54.6 -56.4 -35.5 1.2 2.9 -3.4 46 46 A G H 3<5S+ 0 0 16 -4,-1.4 -36,-0.4 -5,-0.4 -1,-0.3 0.816 108.5 47.6 -69.1 -30.7 4.1 5.2 -3.5 47 47 A K T <<5S- 0 0 151 -4,-2.4 -1,-0.3 -3,-0.7 -2,-0.2 0.104 112.1-118.5 -96.4 21.0 4.5 4.8 -7.2 48 48 A G T < 5 + 0 0 24 -3,-1.2 -3,-0.2 -5,-0.1 -4,-0.1 0.674 55.8 173.0 51.3 15.6 0.8 5.4 -7.8 49 49 A M < - 0 0 36 -5,-2.1 2,-0.3 -6,-0.3 -1,-0.1 0.117 27.6-116.1 -46.3 168.7 0.9 1.9 -9.2 50 50 A D >> - 0 0 51 1,-0.1 4,-2.7 -3,-0.1 3,-0.7 -0.865 21.3-108.9-116.0 149.8 -2.4 0.3 -10.2 51 51 A K H 3> S+ 0 0 94 -2,-0.3 4,-1.7 1,-0.3 5,-0.2 0.830 123.3 52.5 -40.0 -39.7 -4.1 -2.8 -8.7 52 52 A K H 3> S+ 0 0 180 2,-0.2 4,-1.0 3,-0.1 -1,-0.3 0.935 119.6 32.1 -64.9 -47.8 -3.2 -4.5 -12.1 53 53 A K H X> S+ 0 0 131 -3,-0.7 4,-1.3 2,-0.2 3,-0.7 0.978 117.4 52.8 -73.6 -60.0 0.5 -3.5 -11.8 54 54 A A H >X S+ 0 0 0 -4,-2.7 4,-1.8 1,-0.3 3,-1.4 0.892 104.6 58.5 -41.1 -53.0 0.9 -3.6 -8.0 55 55 A A H >X S+ 0 0 6 -4,-1.7 4,-1.0 -5,-0.4 3,-0.8 0.910 102.4 52.5 -44.7 -53.1 -0.5 -7.2 -8.0 56 56 A D H << S+ 0 0 120 -4,-1.0 -1,-0.3 -3,-0.7 -2,-0.2 0.808 109.9 50.6 -55.3 -30.3 2.2 -8.4 -10.3 57 57 A H H << S+ 0 0 76 -3,-1.4 -1,-0.3 -4,-1.3 -2,-0.2 0.779 114.5 42.1 -78.6 -28.3 4.7 -6.8 -7.9 58 58 A L H S+ 0 0 0 -4,-1.8 4,-2.3 -3,-0.8 5,-1.6 0.394 93.2 89.1 -97.2 0.8 3.1 -8.6 -4.9 59 59 A K T <5S+ 0 0 67 -4,-1.0 3,-0.3 -5,-0.3 6,-0.2 0.977 92.2 39.4 -60.5 -58.7 2.7 -11.8 -6.9 60 60 A P T 45S+ 0 0 96 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.536 123.8 44.7 -69.8 -5.6 6.1 -13.3 -6.0 61 61 A F T 45S- 0 0 65 -3,-0.2 -2,-0.2 -24,-0.1 -24,-0.2 0.599 143.0 -6.5-110.4 -21.0 5.6 -11.9 -2.5 62 62 A L T ><5S+ 0 0 18 -4,-2.3 2,-2.0 -3,-0.3 3,-1.2 0.491 70.4 162.9-139.9 -47.9 2.0 -13.0 -2.0 63 63 A D G >>>S+ 0 0 0 -3,-1.2 4,-2.5 -4,-0.2 5,-0.5 0.906 85.8 38.1 -91.8 -74.9 -2.0 -10.5 -3.7 67 67 A L H X5S+ 0 0 118 -4,-0.5 4,-1.6 1,-0.3 5,-0.1 0.900 122.2 47.1 -43.4 -51.5 -5.4 -9.4 -5.1 68 68 A R H >5S+ 0 0 141 -4,-0.2 4,-0.8 2,-0.2 -1,-0.3 0.888 119.7 40.9 -59.9 -40.6 -6.9 -9.8 -1.6 69 69 A F H >>5S+ 0 0 3 -3,-0.3 3,-2.4 2,-0.2 4,-1.7 0.995 111.2 50.5 -70.9 -70.0 -4.0 -7.9 -0.1 70 70 A V H 3X5S+ 0 0 2 -4,-2.5 4,-3.0 1,-0.3 5,-0.3 0.790 103.9 66.0 -38.4 -33.9 -3.4 -5.1 -2.6 71 71 A D H 3XX S+ 0 0 4 -4,-1.7 4,-1.4 2,-0.2 3,-1.1 0.963 104.8 47.8 -70.3 -54.2 -3.6 -1.6 0.6 74 74 A F H 3< S+ 0 0 54 -4,-3.0 4,-0.3 1,-0.3 -1,-0.2 0.832 116.7 45.8 -56.2 -33.2 -5.1 0.7 -2.1 75 75 A E H 3X S+ 0 0 119 -4,-1.0 4,-0.6 -5,-0.3 3,-0.4 0.612 101.3 69.2 -85.0 -13.9 -7.9 1.4 0.4 76 76 A A H XX>S+ 0 0 0 -3,-1.1 4,-2.6 -4,-0.5 3,-1.0 0.884 80.9 72.7 -70.7 -40.1 -5.4 1.9 3.2 77 77 A V H 3X5S+ 0 0 36 -4,-1.4 4,-0.6 1,-0.3 5,-0.3 0.829 108.6 35.6 -42.9 -37.6 -4.1 5.1 1.7 78 78 A E H 345S+ 0 0 141 -3,-0.4 -1,-0.3 -4,-0.3 -2,-0.2 0.639 121.1 50.1 -91.6 -17.9 -7.4 6.7 2.8 79 79 A E H <<5S+ 0 0 116 -3,-1.0 -2,-0.2 -4,-0.6 -3,-0.2 0.953 116.9 33.9 -83.4 -61.1 -7.6 4.6 6.0 80 80 A G H <5S+ 0 0 26 -4,-2.6 -3,-0.2 1,-0.2 3,-0.2 0.894 131.9 34.6 -62.6 -41.1 -4.1 5.1 7.5 81 81 A R S <