==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 14-MAY-05 1X4S . COMPND 2 MOLECULE: ZINC FINGER HIT DOMAIN CONTAINING PROTEIN 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.HE,Y.MUTO,M.INOUE,T.KIGAWA,M.SHIROUZU,T.TERADA,S.YOKOYAMA, . 59 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5039.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 47.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 11.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 13.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 132 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 78.2 -0.0 -18.3 14.2 2 2 A S - 0 0 128 1,-0.1 2,-0.4 0, 0.0 0, 0.0 -0.081 360.0-136.9 -61.9 166.6 2.5 -16.4 16.2 3 3 A S - 0 0 116 3,-0.0 3,-0.1 0, 0.0 2,-0.1 -0.994 14.9-114.6-133.3 136.4 3.3 -12.8 15.4 4 4 A G - 0 0 65 -2,-0.4 3,-0.1 1,-0.1 5,-0.0 -0.361 50.1 -81.7 -68.1 145.2 6.7 -11.0 15.2 5 5 A S - 0 0 122 1,-0.1 2,-0.7 -2,-0.1 3,-0.1 0.121 53.8 -96.1 -39.3 159.3 7.4 -8.3 17.7 6 6 A S S S+ 0 0 128 1,-0.1 -1,-0.1 -3,-0.1 3,-0.0 -0.764 94.8 63.1 -89.5 114.6 6.0 -4.8 17.0 7 7 A G S S+ 0 0 71 -2,-0.7 2,-0.5 -3,-0.1 -1,-0.1 -0.248 94.8 25.2 176.2 -77.9 8.5 -2.6 15.3 8 8 A M - 0 0 183 -3,-0.1 -3,-0.0 0, 0.0 -4,-0.0 -0.966 61.5-156.9-120.8 122.4 9.8 -3.4 11.9 9 9 A E - 0 0 161 -2,-0.5 -3,-0.0 1,-0.1 -4,-0.0 -0.819 16.5-129.8-100.7 133.7 7.9 -5.6 9.4 10 10 A P - 0 0 120 0, 0.0 -1,-0.1 0, 0.0 2,-0.0 -0.052 33.6 -85.1 -69.8 176.2 9.8 -7.5 6.6 11 11 A A - 0 0 65 1,-0.0 15,-0.2 24,-0.0 17,-0.1 -0.157 40.5-141.5 -76.8 175.9 8.8 -7.5 2.9 12 12 A G E -A 25 0A 18 13,-1.7 13,-2.3 15,-0.2 2,-0.7 -0.992 23.1 -97.3-144.4 151.2 6.3 -9.7 1.3 13 13 A P E -A 24 0A 96 0, 0.0 2,-0.2 0, 0.0 9,-0.0 -0.536 46.0-118.3 -69.8 107.1 5.8 -11.6 -2.0 14 14 A C E +A 23 0A 0 9,-2.9 9,-0.6 -2,-0.7 3,-0.2 -0.239 36.3 178.6 -48.6 108.3 3.6 -9.4 -4.2 15 15 A G + 0 0 57 20,-0.4 -1,-0.2 1,-0.2 21,-0.1 0.833 68.3 76.2 -84.1 -35.1 0.6 -11.5 -4.8 16 16 A F S S+ 0 0 95 19,-0.4 -1,-0.2 2,-0.1 3,-0.1 0.800 80.7 95.3 -45.1 -31.8 -1.3 -9.1 -6.9 17 17 A C S S- 0 0 19 -3,-0.2 2,-0.2 1,-0.1 3,-0.1 -0.155 93.6 -87.4 -60.6 157.0 1.0 -10.2 -9.7 18 18 A P > - 0 0 70 0, 0.0 3,-2.6 0, 0.0 -1,-0.1 -0.440 60.9 -77.3 -69.8 136.8 -0.0 -12.9 -12.1 19 19 A A T 3 S+ 0 0 106 1,-0.3 2,-0.3 -2,-0.2 -4,-0.0 0.029 122.3 17.2 -33.3 126.0 0.6 -16.5 -11.1 20 20 A G T 3 S+ 0 0 73 -3,-0.1 2,-1.2 1,-0.0 -1,-0.3 -0.275 105.5 84.7 100.7 -47.6 4.3 -17.1 -11.6 21 21 A E < + 0 0 126 -3,-2.6 2,-0.6 -2,-0.3 -2,-0.1 -0.213 60.4 156.1 -83.2 46.4 5.4 -13.5 -11.9 22 22 A V - 0 0 83 -2,-1.2 -7,-0.1 -5,-0.1 -3,-0.0 -0.649 18.6-175.4 -79.2 118.8 5.7 -13.3 -8.1 23 23 A Q E -A 14 0A 96 -2,-0.6 -9,-2.9 -9,-0.6 2,-1.0 -0.850 35.8 -97.7-116.6 152.1 8.0 -10.5 -7.0 24 24 A P E -A 13 0A 85 0, 0.0 2,-1.6 0, 0.0 3,-0.1 -0.526 35.4-140.1 -69.7 98.6 9.3 -9.5 -3.6 25 25 A A E +A 12 0A 0 -13,-2.3 -13,-1.7 -2,-1.0 12,-0.2 -0.416 27.7 174.6 -63.0 89.5 7.0 -6.6 -2.6 26 26 A R + 0 0 176 -2,-1.6 -1,-0.2 11,-0.3 2,-0.2 0.743 65.6 50.7 -69.4 -23.3 9.7 -4.4 -1.0 27 27 A Y E -B 36 0B 108 9,-1.0 9,-0.9 -15,-0.1 2,-0.3 -0.579 68.9-160.9-109.6 173.9 7.0 -1.7 -0.6 28 28 A T E -B 35 0B 50 7,-0.3 5,-0.2 -2,-0.2 -2,-0.0 -0.982 33.0 -94.5-157.3 143.9 3.5 -1.6 0.8 29 29 A C > - 0 0 1 5,-2.2 4,-2.0 -2,-0.3 5,-0.2 -0.431 26.8-153.1 -62.9 114.8 0.4 0.6 0.6 30 30 A P T 4 S+ 0 0 94 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 0.413 96.3 45.8 -69.7 4.1 0.6 3.0 3.6 31 31 A R T 4 S+ 0 0 147 3,-0.1 -2,-0.1 0, 0.0 21,-0.0 0.669 132.4 13.7-115.1 -33.8 -3.2 3.1 3.4 32 32 A C T 4 S- 0 0 59 -3,-0.1 -3,-0.2 2,-0.1 16,-0.0 0.069 95.7-120.8-131.3 21.4 -4.1 -0.5 3.1 33 33 A N < + 0 0 105 -4,-2.0 -5,-0.0 1,-0.2 0, 0.0 0.869 54.1 164.8 35.7 55.0 -0.8 -2.1 4.0 34 34 A A - 0 0 6 -5,-0.2 -5,-2.2 8,-0.1 2,-0.5 -0.895 35.5-134.4-107.1 115.3 -0.7 -3.8 0.6 35 35 A P E +B 28 0B 43 0, 0.0 2,-0.4 0, 0.0 -19,-0.4 -0.528 29.8 179.8 -69.7 116.4 2.6 -5.3 -0.5 36 36 A Y E -B 27 0B 34 -9,-0.9 -9,-1.0 -2,-0.5 -10,-0.1 -0.969 30.7-145.4-123.9 135.4 3.4 -4.3 -4.1 37 37 A C S S- 0 0 9 -2,-0.4 -11,-0.3 -12,-0.2 2,-0.3 0.935 81.9 -15.5 -60.0 -48.7 6.4 -5.2 -6.2 38 38 A S S > S- 0 0 58 -13,-0.1 4,-2.3 -12,-0.1 3,-0.3 -0.859 81.7 -80.5-146.6 179.6 6.4 -1.8 -8.1 39 39 A L H > S+ 0 0 91 -2,-0.3 4,-1.3 1,-0.2 5,-0.2 0.870 119.3 68.6 -53.8 -39.2 4.2 1.2 -8.8 40 40 A R H >> S+ 0 0 202 1,-0.2 4,-1.3 2,-0.2 3,-1.1 0.938 108.5 33.1 -44.3 -63.5 2.4 -0.8 -11.5 41 41 A C H 3> S+ 0 0 12 -3,-0.3 4,-2.9 1,-0.3 5,-0.4 0.916 106.9 70.3 -61.9 -44.8 0.8 -3.1 -9.0 42 42 A Y H 3X S+ 0 0 13 -4,-2.3 4,-0.6 1,-0.3 7,-0.3 0.767 107.8 40.0 -44.0 -27.6 0.4 -0.4 -6.4 43 43 A R H << S+ 0 0 180 -4,-1.3 -1,-0.3 -3,-1.1 -2,-0.2 0.786 116.9 48.1 -92.4 -33.8 -2.1 1.0 -8.8 44 44 A T H < S+ 0 0 112 -4,-1.3 -2,-0.2 -3,-0.3 -3,-0.2 0.958 104.5 57.7 -71.5 -53.2 -3.7 -2.3 -9.8 45 45 A H H < S- 0 0 40 -4,-2.9 2,-0.3 1,-0.2 -1,-0.2 0.905 127.3 -28.2 -42.8 -53.8 -4.2 -3.7 -6.2 46 46 A G < - 0 0 17 -4,-0.6 3,-0.4 -5,-0.4 -1,-0.2 -0.988 49.9-115.3-161.8 164.7 -6.3 -0.6 -5.3 47 47 A T >> + 0 0 111 -2,-0.3 3,-0.7 1,-0.2 4,-0.5 -0.168 69.6 124.1 -98.3 39.1 -6.9 3.0 -6.0 48 48 A C G >4 + 0 0 25 -6,-0.3 3,-0.9 1,-0.2 -1,-0.2 0.862 60.4 71.5 -65.6 -36.5 -5.8 4.1 -2.5 49 49 A A G >> S+ 0 0 9 -3,-0.4 3,-1.6 -7,-0.3 4,-1.4 0.839 85.1 70.5 -47.9 -37.0 -3.3 6.5 -4.1 50 50 A E G <4 S+ 0 0 123 -3,-0.7 2,-0.7 1,-0.3 4,-0.4 0.932 106.3 34.9 -46.2 -57.3 -6.2 8.7 -5.1 51 51 A N G << S+ 0 0 130 -3,-0.9 -1,-0.3 -4,-0.5 -2,-0.1 -0.369 112.8 65.6 -97.2 53.6 -6.9 9.7 -1.5 52 52 A F T <4 S+ 0 0 101 -3,-1.6 -2,-0.2 -2,-0.7 -1,-0.2 0.541 77.3 69.4-134.3 -54.3 -3.3 9.8 -0.5 53 53 A Y S < S- 0 0 152 -4,-1.4 -2,-0.1 1,-0.1 -3,-0.1 0.855 74.2-163.2 -38.4 -46.7 -1.4 12.5 -2.3 54 54 A S + 0 0 120 -4,-0.4 -1,-0.1 1,-0.2 -3,-0.1 0.896 37.6 138.9 59.3 41.8 -3.4 15.0 -0.2 55 55 A G > - 0 0 32 1,-0.0 3,-0.5 0, 0.0 -1,-0.2 -0.838 68.9-119.6-119.3 156.8 -2.4 17.8 -2.6 56 56 A P T 3 S+ 0 0 139 0, 0.0 -1,-0.0 0, 0.0 -2,-0.0 0.455 103.4 78.4 -69.8 0.8 -4.3 20.7 -4.2 57 57 A S T 3 + 0 0 114 2,-0.0 -4,-0.0 -4,-0.0 -3,-0.0 0.963 67.9 93.2 -74.1 -55.3 -3.5 19.1 -7.6 58 58 A S < 0 0 88 -3,-0.5 -8,-0.0 1,-0.1 0, 0.0 0.057 360.0 360.0 -37.9 146.9 -6.1 16.4 -7.6 59 59 A G 0 0 123 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.129 360.0 360.0-120.9 360.0 -9.4 17.5 -9.3