==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 17-MAY-05 1X60 . COMPND 2 MOLECULE: SPORULATION-SPECIFIC N-ACETYLMURAMOYL-L-ALANINE . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR M.MISHIMA,T.SHIDA,K.YABUKI,K.KATO,J.SEKIGUCHI,C.KOJIMA . 79 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5438.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 62 78.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 22 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 12.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 30.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 199 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 101.2 -14.6 -14.2 20.1 2 2 A K + 0 0 191 1,-0.2 2,-0.3 2,-0.0 3,-0.1 0.896 360.0 153.6 59.8 104.1 -15.2 -14.1 16.4 3 3 A K + 0 0 185 1,-0.3 -1,-0.2 0, 0.0 0, 0.0 -0.989 33.8 32.1-158.0 155.3 -16.1 -10.6 15.2 4 4 A T S S- 0 0 114 -2,-0.3 -1,-0.3 1,-0.1 2,-0.2 0.774 81.6-100.4 62.7 119.1 -15.9 -8.4 12.1 5 5 A S - 0 0 120 -3,-0.1 2,-0.6 1,-0.1 -1,-0.1 -0.487 31.9-144.6 -71.6 134.6 -16.2 -10.1 8.7 6 6 A S + 0 0 124 -2,-0.2 2,-0.1 3,-0.0 3,-0.1 -0.897 43.1 130.0-106.3 115.8 -13.0 -10.7 6.9 7 7 A S - 0 0 108 1,-0.6 72,-0.1 -2,-0.6 -2,-0.1 -0.542 66.5 -23.9-166.1 91.6 -13.1 -10.4 3.1 8 8 A G - 0 0 16 -2,-0.1 -1,-0.6 1,-0.1 2,-0.3 0.126 59.7-126.1 85.6 156.7 -10.6 -8.3 1.2 9 9 A L E -A 78 0A 78 69,-0.6 69,-2.3 -3,-0.1 2,-0.8 -0.999 5.8-137.2-143.6 139.8 -8.5 -5.4 2.3 10 10 A Y E +AB 77 53A 66 43,-1.9 43,-2.9 -2,-0.3 2,-0.3 -0.845 37.2 159.0-101.8 105.9 -8.0 -1.9 0.9 11 11 A K E -AB 76 52A 53 65,-1.9 65,-2.4 -2,-0.8 2,-0.4 -0.915 33.3-130.0-125.2 151.9 -4.4 -0.8 0.9 12 12 A V E -A 75 0A 0 39,-2.0 38,-2.8 38,-0.3 2,-0.4 -0.806 21.2-170.5-103.8 142.6 -2.5 1.8 -1.1 13 13 A Q E -AB 74 49A 51 61,-3.1 61,-2.1 -2,-0.4 36,-0.2 -0.996 19.1-178.9-136.3 131.9 0.7 1.1 -3.0 14 14 A I E - 0 0 14 34,-2.0 58,-0.4 -2,-0.4 2,-0.3 0.482 66.3 -46.6-105.4 -5.5 3.2 3.5 -4.6 15 15 A G E - B 0 48A 20 33,-0.9 33,-3.3 59,-0.1 -1,-0.3 -0.907 40.8-127.4 159.7 173.5 5.6 0.9 -6.0 16 16 A A E - B 0 47A 37 31,-0.3 2,-0.3 -2,-0.3 31,-0.3 -0.987 21.0-179.8-151.4 142.7 7.8 -2.1 -5.6 17 17 A F E - B 0 46A 85 29,-2.9 29,-2.7 -2,-0.3 6,-0.1 -0.997 40.8-119.3-147.8 150.6 11.5 -2.8 -6.3 18 18 A K S S+ 0 0 161 -2,-0.3 2,-0.5 27,-0.3 29,-0.1 0.656 99.6 75.7 -60.5 -15.1 14.0 -5.7 -6.1 19 19 A V > - 0 0 70 27,-0.2 4,-1.3 1,-0.1 -2,-0.1 -0.882 64.4-161.1-106.5 129.8 15.9 -3.4 -3.7 20 20 A K H > S+ 0 0 98 -2,-0.5 4,-1.8 2,-0.2 5,-0.2 0.878 94.1 60.0 -71.9 -39.2 14.8 -2.9 -0.1 21 21 A A H > S+ 0 0 66 1,-0.3 4,-1.5 2,-0.2 -1,-0.2 0.849 108.5 46.4 -57.7 -32.0 16.8 0.2 0.3 22 22 A N H > S+ 0 0 87 2,-0.2 4,-1.6 1,-0.2 -1,-0.3 0.842 110.2 52.1 -77.5 -34.4 14.8 1.6 -2.6 23 23 A A H X S+ 0 0 0 -4,-1.3 4,-1.5 1,-0.2 -2,-0.2 0.705 109.2 52.0 -73.4 -19.5 11.6 0.3 -1.0 24 24 A D H X S+ 0 0 75 -4,-1.8 4,-1.2 2,-0.2 -2,-0.2 0.855 106.5 50.7 -83.7 -38.3 12.6 2.1 2.3 25 25 A S H X S+ 0 0 88 -4,-1.5 4,-1.5 -5,-0.2 -2,-0.2 0.888 112.5 48.8 -65.5 -38.0 13.2 5.5 0.6 26 26 A L H X S+ 0 0 30 -4,-1.6 4,-1.7 1,-0.2 3,-0.5 0.949 108.3 51.4 -66.0 -50.1 9.8 5.2 -1.0 27 27 A A H X S+ 0 0 6 -4,-1.5 4,-1.5 1,-0.2 10,-0.2 0.769 107.0 58.3 -58.5 -24.3 8.1 4.3 2.3 28 28 A S H X S+ 0 0 71 -4,-1.2 4,-1.5 2,-0.2 -1,-0.2 0.895 100.5 53.8 -72.9 -41.5 9.8 7.4 3.7 29 29 A N H X S+ 0 0 32 -4,-1.5 4,-1.0 -3,-0.5 3,-0.4 0.931 109.8 47.4 -58.7 -47.4 8.2 9.7 1.1 30 30 A A H X>S+ 0 0 0 -4,-1.7 5,-1.8 1,-0.2 4,-1.5 0.892 104.7 60.8 -61.5 -40.3 4.7 8.5 2.0 31 31 A E H <5S+ 0 0 122 -4,-1.5 -1,-0.2 3,-0.2 -2,-0.2 0.865 95.9 63.3 -54.7 -37.3 5.6 8.9 5.7 32 32 A A H <5S+ 0 0 71 -4,-1.5 -1,-0.2 -3,-0.4 -2,-0.2 0.938 103.4 45.4 -53.1 -51.3 6.1 12.6 5.0 33 33 A K H <5S- 0 0 100 -4,-1.0 -1,-0.3 -3,-0.4 -2,-0.2 0.820 128.9-104.3 -62.5 -28.5 2.5 13.1 4.1 34 34 A G T <5S+ 0 0 55 -4,-1.5 2,-0.3 1,-0.2 -3,-0.2 0.710 70.3 145.3 108.7 32.9 1.8 11.0 7.2 35 35 A F < - 0 0 12 -5,-1.8 2,-1.2 -8,-0.1 -1,-0.2 -0.677 57.4-109.0-100.4 155.9 0.8 7.6 5.7 36 36 A D - 0 0 121 -2,-0.3 15,-1.8 -6,-0.0 2,-0.1 -0.691 42.9-163.9 -85.0 94.5 1.6 4.2 7.2 37 37 A S E -C 50 0A 46 -2,-1.2 2,-0.3 -10,-0.2 13,-0.2 -0.417 8.8-175.5 -80.2 156.0 4.2 2.9 4.9 38 38 A I E -C 49 0A 80 11,-1.5 11,-2.4 -2,-0.1 2,-0.6 -0.976 17.3-150.2-154.7 137.7 5.2 -0.8 4.8 39 39 A V E -C 48 0A 47 -2,-0.3 2,-0.5 9,-0.2 9,-0.2 -0.935 15.7-175.6-115.0 113.9 7.8 -2.8 2.9 40 40 A L E -C 47 0A 101 7,-1.5 7,-2.5 -2,-0.6 2,-0.7 -0.932 17.9-141.8-112.9 125.3 7.0 -6.5 2.1 41 41 A L E -C 46 0A 93 -2,-0.5 5,-0.3 5,-0.2 2,-0.2 -0.748 22.1-172.5 -88.1 114.0 9.6 -8.7 0.5 42 42 A K E > -C 45 0A 77 3,-3.5 2,-3.8 -2,-0.7 3,-0.6 -0.529 50.0 -69.1 -98.7 166.8 8.1 -11.0 -2.1 43 43 A D T 3 S- 0 0 165 1,-0.3 3,-0.1 -2,-0.2 -1,-0.1 -0.193 126.8 -5.5 -55.2 66.9 9.8 -13.9 -3.9 44 44 A G T 3 S+ 0 0 41 -2,-3.8 2,-0.3 1,-0.3 -1,-0.3 0.146 127.0 49.6 135.0 -23.9 12.0 -11.5 -5.9 45 45 A L E < - C 0 42A 65 -3,-0.6 -3,-3.5 -5,-0.0 2,-0.4 -0.944 65.4-124.1-143.4 166.2 10.9 -7.9 -5.1 46 46 A Y E -BC 17 41A 59 -29,-2.7 -29,-2.9 -2,-0.3 2,-0.3 -0.920 24.6-150.8-113.0 134.2 10.1 -5.5 -2.4 47 47 A K E -BC 16 40A 54 -7,-2.5 -7,-1.5 -2,-0.4 2,-0.6 -0.805 4.2-151.0-107.9 148.2 6.7 -3.7 -2.2 48 48 A V E +BC 15 39A 0 -33,-3.3 -34,-2.0 -2,-0.3 -33,-0.9 -0.902 20.7 176.1-120.8 101.6 5.9 -0.3 -0.8 49 49 A Q E -BC 13 38A 24 -11,-2.4 -11,-1.5 -2,-0.6 2,-0.4 -0.845 8.5-168.4-107.5 142.2 2.4 0.1 0.5 50 50 A I E + C 0 37A 0 -38,-2.8 -38,-0.3 -2,-0.4 -13,-0.2 -0.979 57.8 9.9-135.1 123.1 1.0 3.2 2.3 51 51 A G E - 0 0 0 -15,-1.8 -39,-2.0 -2,-0.4 2,-0.4 0.832 60.9-166.4 79.1 105.6 -2.3 3.4 4.2 52 52 A A E +B 11 0A 44 -41,-0.2 2,-0.3 -3,-0.1 -41,-0.2 -0.985 18.2 152.3-127.1 124.9 -4.3 0.2 4.8 53 53 A F E -B 10 0A 65 -43,-2.9 -43,-1.9 -2,-0.4 6,-0.1 -0.891 53.5-113.5-142.7 173.0 -7.9 0.1 6.0 54 54 A S S S+ 0 0 102 -2,-0.3 2,-0.5 -45,-0.2 -43,-0.1 0.636 100.7 66.7 -83.0 -15.9 -11.1 -2.0 5.9 55 55 A S S >> S- 0 0 53 -45,-0.2 3,-1.8 1,-0.1 4,-1.0 -0.928 73.3-145.7-112.5 128.5 -12.8 0.6 3.7 56 56 A K H 3> S+ 0 0 83 -2,-0.5 4,-2.7 1,-0.3 5,-0.2 0.840 98.2 70.9 -56.3 -34.9 -11.7 1.4 0.2 57 57 A D H 3> S+ 0 0 90 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.809 97.1 52.8 -52.5 -30.9 -12.7 5.0 0.7 58 58 A N H <> S+ 0 0 51 -3,-1.8 4,-2.0 2,-0.2 -1,-0.2 0.946 108.7 46.3 -70.8 -50.2 -9.6 5.2 3.0 59 59 A A H X S+ 0 0 0 -4,-1.0 4,-3.3 1,-0.2 -2,-0.2 0.879 111.5 53.8 -59.7 -40.2 -7.2 3.8 0.5 60 60 A D H X S+ 0 0 71 -4,-2.7 4,-2.7 2,-0.2 5,-0.3 0.950 108.5 47.1 -60.5 -51.5 -8.6 6.1 -2.2 61 61 A T H X S+ 0 0 87 -4,-1.8 4,-1.3 -5,-0.2 -1,-0.2 0.861 116.7 46.4 -59.0 -36.0 -8.1 9.2 -0.1 62 62 A L H X S+ 0 0 14 -4,-2.0 4,-2.3 2,-0.2 -2,-0.2 0.943 112.3 48.8 -69.6 -52.0 -4.5 8.1 0.7 63 63 A A H >X S+ 0 0 6 -4,-3.3 4,-2.3 1,-0.2 3,-0.6 0.963 112.1 46.6 -53.7 -59.1 -3.7 7.2 -2.8 64 64 A A H 3X S+ 0 0 55 -4,-2.7 4,-2.7 1,-0.3 -1,-0.2 0.859 111.1 55.0 -52.6 -36.8 -4.9 10.4 -4.3 65 65 A R H 3X S+ 0 0 153 -4,-1.3 4,-1.9 -5,-0.3 -1,-0.3 0.889 105.9 51.2 -64.3 -38.7 -3.0 12.2 -1.5 66 66 A A H S+ 0 0 0 -4,-2.3 5,-3.9 -3,-0.6 4,-1.3 0.907 109.5 50.3 -64.9 -40.9 0.2 10.3 -2.6 67 67 A K H ><5S+ 0 0 119 -4,-2.3 3,-0.5 1,-0.2 -2,-0.2 0.941 115.3 41.8 -61.9 -46.9 -0.4 11.5 -6.1 68 68 A N H 3<5S+ 0 0 150 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.769 112.6 57.1 -69.5 -25.7 -0.8 15.0 -4.9 69 69 A A H 3<5S- 0 0 21 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 0.704 129.2 -95.8 -77.1 -22.5 2.1 14.4 -2.6 70 70 A G T <<5S+ 0 0 63 -4,-1.3 2,-0.3 -3,-0.5 -3,-0.2 0.633 90.5 108.4 112.1 23.9 4.4 13.4 -5.5 71 71 A F S