==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CHAPERONE 07-OCT-96 1XBL . COMPND 2 MOLECULE: DNAJ; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR M.PELLECCHIA,T.SZYPERSKI,D.WALL,C.GEORGOPOULOS,K.WUTHRICH . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5637.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 62.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 44.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A A 0 0 89 0, 0.0 68,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 75.3 -0.6 16.3 1.5 2 3 A K - 0 0 101 68,-0.1 2,-0.3 2,-0.1 68,-0.1 0.063 360.0 -86.9 65.5 163.6 -1.5 12.9 0.4 3 4 A Q - 0 0 103 66,-0.1 2,-1.7 -2,-0.0 62,-0.1 -0.712 38.8-100.0 -99.1 154.4 -0.3 10.0 2.5 4 5 A D > - 0 0 48 -2,-0.3 4,-2.3 1,-0.2 3,-0.4 -0.586 38.4-175.2 -75.3 89.2 3.1 8.2 2.0 5 6 A Y T 4 S+ 0 0 44 -2,-1.7 4,-0.3 1,-0.2 -1,-0.2 0.360 80.0 57.5 -70.5 6.4 1.8 5.2 0.1 6 7 A Y T > S+ 0 0 21 3,-0.1 4,-2.6 2,-0.1 5,-0.5 0.762 109.8 41.1 -96.7 -37.9 5.3 3.8 0.2 7 8 A E T 4 S+ 0 0 139 -3,-0.4 -2,-0.2 2,-0.2 7,-0.0 0.851 101.5 71.0 -77.3 -35.2 5.6 3.8 4.0 8 9 A I T < S+ 0 0 33 -4,-2.3 -1,-0.2 1,-0.2 41,-0.1 0.897 116.2 25.4 -53.6 -46.2 2.0 2.6 4.5 9 10 A L T 4 S- 0 0 7 -4,-0.3 -2,-0.2 40,-0.1 -1,-0.2 0.952 112.5-132.9 -70.4 -64.0 3.2 -0.8 3.2 10 11 A G < + 0 0 29 -4,-2.6 2,-0.2 3,-0.2 -3,-0.2 0.616 42.1 152.5 106.3 92.2 6.8 -0.2 4.3 11 12 A V - 0 0 27 -5,-0.5 2,-2.7 2,-0.4 9,-0.0 -0.775 62.3 -56.4-141.5 176.4 9.3 -1.0 1.6 12 13 A S S S- 0 0 67 -2,-0.2 2,-0.7 2,-0.1 -5,-0.1 -0.307 93.0 -78.0 -64.2 70.8 12.9 0.1 0.6 13 14 A K S S- 0 0 152 -2,-2.7 -2,-0.4 1,-0.2 -3,-0.2 -0.683 108.6 -14.7 63.2-106.5 11.9 3.8 0.3 14 15 A T S S+ 0 0 82 -2,-0.7 -1,-0.2 -7,-0.0 3,-0.1 -0.333 86.4 174.5-126.0 43.3 10.1 4.0 -3.1 15 16 A A - 0 0 22 1,-0.1 5,-0.1 -9,-0.1 -2,-0.1 -0.039 42.4 -82.5 -49.2 154.5 11.2 0.7 -4.6 16 17 A E >> - 0 0 139 1,-0.1 4,-2.2 3,-0.1 3,-1.9 -0.134 44.3-100.9 -55.3 160.0 9.7 -0.3 -8.0 17 18 A E H 3> S+ 0 0 58 1,-0.3 4,-3.0 2,-0.2 5,-0.3 0.823 120.5 78.6 -53.8 -26.9 6.2 -1.9 -8.0 18 19 A R H 34 S+ 0 0 177 1,-0.2 4,-0.4 2,-0.2 -1,-0.3 0.884 107.3 25.6 -43.8 -50.7 8.4 -5.0 -8.4 19 20 A E H X> S+ 0 0 92 -3,-1.9 4,-2.4 2,-0.2 3,-1.0 0.815 113.6 66.9 -90.5 -32.7 9.2 -4.9 -4.7 20 21 A I H 3X S+ 0 0 1 -4,-2.2 4,-3.4 1,-0.3 5,-0.2 0.914 98.0 55.7 -53.9 -42.3 6.0 -3.1 -3.6 21 22 A R H 3X S+ 0 0 96 -4,-3.0 4,-2.3 1,-0.2 -1,-0.3 0.857 107.6 49.7 -55.3 -37.2 4.1 -6.2 -4.7 22 23 A K H <> S+ 0 0 117 -3,-1.0 4,-2.2 -4,-0.4 -2,-0.2 0.917 112.2 45.6 -69.8 -47.4 6.3 -8.1 -2.3 23 24 A A H X S+ 0 0 5 -4,-2.4 4,-3.0 2,-0.2 5,-0.3 0.987 114.1 50.2 -54.9 -54.9 5.6 -5.6 0.6 24 25 A Y H X S+ 0 0 44 -4,-3.4 4,-3.0 1,-0.2 5,-0.2 0.873 109.2 52.3 -53.4 -44.0 1.9 -5.7 -0.3 25 26 A K H X S+ 0 0 143 -4,-2.3 4,-1.7 -5,-0.2 -1,-0.2 0.941 114.4 39.7 -61.8 -51.4 1.9 -9.5 -0.2 26 27 A R H X S+ 0 0 177 -4,-2.2 4,-2.4 2,-0.2 -2,-0.2 0.949 121.2 43.9 -59.8 -48.4 3.5 -9.9 3.2 27 28 A L H X S+ 0 0 18 -4,-3.0 4,-3.1 -5,-0.2 -2,-0.2 0.905 108.4 57.1 -71.1 -41.1 1.5 -7.0 4.7 28 29 A A H < S+ 0 0 11 -4,-3.0 -1,-0.2 -5,-0.3 -2,-0.2 0.911 112.4 41.6 -54.4 -49.5 -1.8 -8.0 3.2 29 30 A M H >< S+ 0 0 125 -4,-1.7 3,-1.2 -5,-0.2 -1,-0.2 0.914 115.3 51.2 -66.8 -41.5 -1.6 -11.4 4.8 30 31 A K H 3< S+ 0 0 140 -4,-2.4 -2,-0.2 1,-0.3 -1,-0.2 0.928 116.8 39.3 -57.7 -47.2 -0.3 -10.0 8.1 31 32 A Y T 3< S+ 0 0 60 -4,-3.1 15,-0.5 -5,-0.1 -1,-0.3 0.128 84.2 127.1 -96.2 16.5 -3.1 -7.4 8.3 32 33 A H < - 0 0 98 -3,-1.2 4,-0.1 1,-0.1 11,-0.1 -0.619 59.9-137.7 -71.7 137.1 -5.9 -9.7 7.0 33 34 A P > + 0 0 22 0, 0.0 3,-1.9 0, 0.0 -1,-0.1 0.957 29.8 175.5 -58.8 -53.9 -8.8 -9.7 9.5 34 35 A D T 3 S- 0 0 85 1,-0.3 -2,-0.0 2,-0.1 3,-0.0 0.934 84.5 -32.4 35.7 80.0 -9.4 -13.5 9.4 35 36 A R T 3 S+ 0 0 205 1,-0.2 2,-2.1 3,-0.0 -1,-0.3 0.281 110.4 119.8 57.7 -0.4 -12.2 -13.5 12.1 36 37 A N <> + 0 0 107 -3,-1.9 4,-0.7 -4,-0.1 7,-0.3 -0.385 44.3 144.8 -80.2 58.0 -10.4 -10.5 13.9 37 38 A Q T 4 + 0 0 116 -2,-2.1 2,-1.5 2,-0.2 4,-0.0 -0.317 44.0 49.2 -83.8 173.8 -13.7 -8.6 13.2 38 39 A G T 4 S+ 0 0 67 1,-0.2 -1,-0.1 -2,-0.1 3,-0.1 -0.267 101.9 70.1 83.2 -47.9 -15.1 -6.1 15.7 39 40 A D T 4 S+ 0 0 81 -2,-1.5 2,-1.4 1,-0.2 -1,-0.2 0.989 72.2 167.3 -53.6 -61.9 -11.6 -4.5 15.8 40 41 A K X + 0 0 144 -4,-0.7 4,-1.8 1,-0.2 -1,-0.2 -0.191 53.8 78.5 83.0 -40.6 -12.4 -3.4 12.2 41 42 A E H > S+ 0 0 102 -2,-1.4 4,-2.2 2,-0.2 -1,-0.2 0.854 83.5 62.3 -69.7 -36.9 -9.5 -1.0 11.9 42 43 A A H > S+ 0 0 23 2,-0.2 4,-2.1 1,-0.2 -1,-0.2 0.926 106.3 46.2 -56.3 -44.6 -7.0 -3.8 11.2 43 44 A E H > S+ 0 0 74 -7,-0.3 4,-2.3 1,-0.2 -1,-0.2 0.953 110.0 54.4 -58.3 -46.1 -9.0 -4.6 8.1 44 45 A A H X S+ 0 0 41 -4,-1.8 4,-2.4 2,-0.2 -2,-0.2 0.836 104.0 55.5 -55.4 -32.4 -9.0 -0.8 7.4 45 46 A K H X S+ 0 0 75 -4,-2.2 4,-2.5 2,-0.2 -1,-0.2 0.945 106.5 48.8 -66.2 -47.0 -5.2 -1.0 7.7 46 47 A F H X S+ 0 0 35 -4,-2.1 4,-2.6 -15,-0.5 -2,-0.2 0.864 108.5 55.9 -57.1 -35.6 -5.2 -3.6 5.0 47 48 A K H X S+ 0 0 120 -4,-2.3 4,-2.9 2,-0.2 -2,-0.2 0.941 108.2 46.8 -63.6 -44.9 -7.5 -1.2 3.0 48 49 A E H X S+ 0 0 83 -4,-2.4 4,-3.1 2,-0.2 -2,-0.2 0.897 111.8 50.4 -58.5 -44.7 -4.8 1.5 3.4 49 50 A I H X S+ 0 0 2 -4,-2.5 4,-2.4 1,-0.2 -2,-0.2 0.894 113.4 45.6 -68.8 -36.9 -2.1 -1.0 2.3 50 51 A K H X S+ 0 0 88 -4,-2.6 4,-2.7 2,-0.2 -1,-0.2 0.938 111.9 52.1 -59.1 -49.9 -4.2 -1.9 -0.7 51 52 A E H X S+ 0 0 72 -4,-2.9 4,-3.0 2,-0.2 5,-0.2 0.928 109.8 50.5 -54.3 -48.2 -4.8 1.9 -1.3 52 53 A A H X S+ 0 0 0 -4,-3.1 4,-2.6 1,-0.2 -1,-0.2 0.957 111.9 45.1 -54.1 -57.7 -1.1 2.4 -1.2 53 54 A Y H < S+ 0 0 29 -4,-2.4 -1,-0.2 1,-0.2 -2,-0.2 0.889 114.4 50.4 -53.6 -43.5 -0.4 -0.4 -3.7 54 55 A E H >< S+ 0 0 69 -4,-2.7 3,-1.5 1,-0.2 4,-0.4 0.886 109.3 48.7 -70.4 -40.2 -3.2 0.9 -5.9 55 56 A V H >< S+ 0 0 3 -4,-3.0 3,-1.9 1,-0.3 -1,-0.2 0.922 104.2 63.6 -63.5 -41.1 -1.9 4.5 -5.9 56 57 A L T 3< S+ 0 0 4 -4,-2.6 -1,-0.3 1,-0.3 -2,-0.2 0.405 108.6 39.4 -70.0 7.4 1.5 3.1 -6.7 57 58 A T T < S+ 0 0 63 -3,-1.5 -1,-0.3 -5,-0.1 -2,-0.2 0.333 102.9 92.8-123.7 2.2 0.1 1.8 -10.0 58 59 A D S < S- 0 0 71 -3,-1.9 -3,-0.1 -4,-0.4 0, 0.0 -0.064 71.6-127.3 -84.1-174.3 -2.1 4.9 -10.7 59 60 A S S > S+ 0 0 96 3,-0.1 4,-0.7 4,-0.0 5,-0.1 0.878 88.1 19.1 -99.0 -75.5 -1.2 8.0 -12.7 60 61 A Q H >> S+ 0 0 108 1,-0.2 4,-2.9 2,-0.2 3,-1.4 0.956 123.1 49.6 -79.4 -52.7 -1.7 11.4 -11.0 61 62 A K H 3> S+ 0 0 69 1,-0.3 4,-0.8 2,-0.2 -1,-0.2 0.802 109.5 58.4 -46.3 -36.3 -1.8 10.5 -7.3 62 63 A R H 34 S+ 0 0 89 -7,-0.2 4,-0.3 1,-0.1 -1,-0.3 0.770 118.1 26.5 -74.4 -27.6 1.4 8.5 -8.0 63 64 A A H < S- 0 0 161 -4,-2.6 3,-2.1 -5,-0.2 2,-0.4 -0.521 75.1 -99.9-161.0 75.3 5.3 17.9 -4.3 69 70 A G T 3< S- 0 0 11 -4,-1.7 -1,-0.1 1,-0.3 -2,-0.1 -0.163 99.4 -24.9 54.9-100.7 2.1 16.6 -2.6 70 71 A H T 3 S+ 0 0 110 -2,-0.4 -1,-0.3 -5,-0.1 -5,-0.1 -0.411 122.5 84.3-142.9 58.9 -0.5 18.5 -4.7 71 72 A A S < S+ 0 0 73 -3,-2.1 -1,-0.1 -7,-0.3 -2,-0.1 -0.492 85.1 60.1-144.8 67.4 1.5 21.5 -6.0 72 73 A A S S+ 0 0 16 -3,-0.1 2,-0.2 -5,-0.1 -3,-0.1 0.233 111.7 18.4-151.9 -62.4 3.0 19.6 -8.9 73 74 A F + 0 0 94 -5,-0.1 -9,-0.1 1,-0.1 -10,-0.1 -0.570 68.2 131.5-137.7 62.8 0.3 18.3 -11.3 74 75 A E 0 0 87 -2,-0.2 -1,-0.1 -10,-0.1 -4,-0.0 0.040 360.0 360.0-106.6 16.2 -2.9 20.2 -10.6 75 76 A Q 0 0 191 -3,-0.1 -2,-0.1 0, 0.0 -3,-0.0 0.315 360.0 360.0-104.4 360.0 -3.3 20.8 -14.4