==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 21-DEC-10 2Y3L . COMPND 2 MOLECULE: AMYLOID BETA A4 PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.P.COLLETIER,A.LAGANOWSKY,M.R.SAWAYA,D.EISENBERG . 32 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2600.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 148 0, 0.0 25,-0.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 146.6 0.3 13.1 8.4 2 2 A V + 0 0 34 23,-0.2 2,-0.3 24,-0.1 23,-0.2 -0.980 360.0 175.9-150.4 122.7 -0.3 9.5 9.0 3 3 A G E +A 24 0A 28 21,-2.1 21,-2.5 -2,-0.4 2,-0.3 -0.972 7.1 179.2-136.8 152.3 0.2 7.9 12.4 4 4 A G E -A 23 0A 30 -2,-0.3 2,-0.4 19,-0.2 19,-0.2 -0.986 3.4-175.2-155.7 146.4 -0.4 4.6 14.1 5 5 A V E -A 22 0A 92 17,-2.8 17,-2.4 -2,-0.3 2,-0.3 -0.997 2.2-170.5-140.5 141.7 0.1 2.9 17.4 6 6 A V E -A 21 0A 58 -2,-0.4 2,-0.4 15,-0.2 15,-0.2 -0.984 4.0-173.5-128.7 146.6 -0.3 -0.6 18.8 7 7 A I E A 20 0A 114 13,-2.4 13,-2.0 -2,-0.3 -2,-0.0 -0.999 360.0 360.0-129.0 134.5 -0.2 -2.0 22.4 8 8 A A 0 0 138 -2,-0.4 -1,-0.1 11,-0.2 13,-0.0 0.529 360.0 360.0-171.1 360.0 -0.4 -5.7 22.9 9 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 10 1 B M 0 0 152 0, 0.0 25,-0.9 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 130.8 2.6 13.2 -1.5 11 2 B V E +B 34 0B 123 23,-0.2 2,-0.3 24,-0.1 23,-0.2 -0.995 360.0 158.4-126.3 134.0 2.2 9.5 -1.4 12 3 B G E +B 33 0B 28 21,-2.0 21,-2.4 -2,-0.4 2,-0.3 -0.995 14.6 179.7-159.5 152.0 2.8 7.9 2.0 13 4 B G E -B 32 0B 56 -2,-0.3 2,-0.4 19,-0.2 19,-0.2 -0.996 6.8-163.1-162.9 149.1 2.0 4.7 4.0 14 5 B V E -B 31 0B 56 17,-2.4 17,-1.9 -2,-0.3 2,-0.3 -0.970 2.2-171.2-140.3 145.5 2.5 2.9 7.3 15 6 B V E -B 30 0B 101 -2,-0.4 2,-0.4 15,-0.2 15,-0.2 -0.999 9.8-175.8-138.6 137.2 2.2 -0.5 8.8 16 7 B I E B 29 0B 51 13,-2.9 13,-1.9 -2,-0.3 -11,-0.1 -0.980 360.0 360.0-123.8 114.6 2.3 -2.0 12.4 17 8 B A 0 0 138 -2,-0.4 -1,-0.1 11,-0.2 13,-0.0 0.726 360.0 360.0-133.5 360.0 2.1 -5.7 12.2 18 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 1 C M 0 0 159 0, 0.0 2,-0.4 0, 0.0 -11,-0.2 0.000 360.0 360.0 360.0 124.8 -4.7 -5.0 23.0 20 2 C V E +A 7 0A 94 -13,-2.0 -13,-2.4 2,-0.0 2,-0.3 -0.979 360.0 174.2-129.5 128.0 -5.1 -1.4 21.9 21 3 C G E +A 6 0A 43 -2,-0.4 2,-0.3 -15,-0.2 -15,-0.2 -0.975 3.9 179.9-131.3 146.7 -4.6 0.1 18.4 22 4 C G E -A 5 0A 29 -17,-2.4 -17,-2.8 -2,-0.3 2,-0.3 -0.999 1.5-176.3-145.0 148.3 -5.2 3.4 16.8 23 5 C V E -A 4 0A 74 -2,-0.3 2,-0.3 -19,-0.2 -19,-0.2 -0.996 5.9-176.6-140.6 144.4 -4.6 5.0 13.3 24 6 C V E -A 3 0A 74 -21,-2.5 -21,-2.1 -2,-0.3 2,-0.3 -0.992 23.6-159.5-147.3 150.2 -5.0 8.4 11.6 25 7 C I 0 0 84 -2,-0.3 -23,-0.2 -23,-0.2 -2,-0.0 -0.867 360.0 360.0-138.3 122.8 -4.8 10.6 8.6 26 8 C A 0 0 111 -25,-0.4 -24,-0.1 -2,-0.3 -1,-0.1 -0.306 360.0 360.0-138.7 360.0 -4.6 13.5 9.5 27 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 28 1 G M 0 0 161 0, 0.0 2,-0.4 0, 0.0 -11,-0.2 0.000 360.0 360.0 360.0 114.2 -2.1 -4.9 12.3 29 2 G V E +B 16 0B 17 -13,-1.9 -13,-2.9 -25,-0.0 2,-0.3 -0.995 360.0 170.3-123.3 135.7 -2.7 -1.3 11.7 30 3 G G E +B 15 0B 31 -2,-0.4 2,-0.3 -15,-0.2 -15,-0.2 -0.961 7.2 173.1-134.3 157.6 -2.2 0.3 8.3 31 4 G G E -B 14 0B 19 -17,-1.9 -17,-2.4 -2,-0.3 2,-0.3 -0.955 5.1-172.5-158.8 154.7 -2.9 3.5 6.5 32 5 G V E -B 13 0B 99 -2,-0.3 2,-0.3 -19,-0.2 -19,-0.2 -0.984 3.1-168.7-148.2 138.8 -2.2 5.2 3.2 33 6 G V E -B 12 0B 26 -21,-2.4 -21,-2.0 -2,-0.3 2,-0.3 -0.948 18.9-151.6-124.2 152.1 -2.6 8.6 1.6 34 7 G I E B 11 0B 146 -2,-0.3 -23,-0.2 -23,-0.2 -2,-0.0 -0.910 360.0 360.0-134.1 122.5 -2.4 10.5 -1.7 35 8 G A 0 0 86 -25,-0.9 -1,-0.2 -2,-0.3 -24,-0.1 0.502 360.0 360.0-111.0 360.0 -1.6 13.3 -0.8