==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 08-AUG-96 1YFC . COMPND 2 MOLECULE: YEAST ISO-1-FERROCYTOCHROME C; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR P.BAISTROCCHI,L.BANCI,I.BERTINI,P.TURANO,K.L.BREN,H.B.GRAY . 108 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6981.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 58 53.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 1.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 0.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 11 10.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -5 A T 0 0 91 0, 0.0 65,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -56.0 3.0 -13.5 -9.0 2 -4 A E + 0 0 147 0, 0.0 64,-0.0 0, 0.0 0, 0.0 0.657 360.0 91.6-114.5 -32.8 6.2 -15.1 -7.7 3 -3 A F S S- 0 0 38 1,-0.1 3,-0.1 93,-0.1 64,-0.0 0.242 98.7 -91.7 -51.6-174.7 5.2 -15.9 -4.2 4 -2 A K - 0 0 171 1,-0.2 -1,-0.1 90,-0.0 93,-0.0 0.184 64.1-129.7 -89.3 15.7 3.7 -19.2 -3.2 5 -1 A A - 0 0 49 2,-0.0 -1,-0.2 92,-0.0 93,-0.1 0.249 18.6-127.6 54.5 170.1 0.3 -17.6 -3.8 6 1 A G - 0 0 30 92,-0.1 92,-0.1 91,-0.1 89,-0.0 0.043 8.3-122.0-120.4-131.9 -2.5 -17.8 -1.2 7 2 A S - 0 0 92 91,-0.1 91,-0.1 -2,-0.1 95,-0.0 -0.016 63.5 -73.7 175.2 61.7 -6.1 -19.0 -1.2 8 3 A A S S+ 0 0 91 90,-0.1 4,-0.1 2,-0.1 3,-0.1 0.824 86.0 159.1 40.1 38.1 -8.5 -16.3 -0.1 9 4 A K > - 0 0 123 1,-0.2 2,-1.8 2,-0.1 3,-0.5 0.536 63.3 -37.5 -62.0-141.6 -7.1 -17.1 3.4 10 5 A K T 3 S+ 0 0 112 1,-0.2 -1,-0.2 2,-0.1 88,-0.1 -0.445 99.2 119.1 -86.3 62.2 -7.5 -14.5 6.2 11 6 A G T 3> + 0 0 0 -2,-1.8 4,-2.1 2,-0.1 3,-0.4 0.861 68.6 50.7 -91.8 -45.7 -6.9 -11.6 3.8 12 7 A A H <> S+ 0 0 82 -3,-0.5 4,-1.9 1,-0.3 -2,-0.1 0.967 112.6 45.9 -56.1 -58.0 -10.2 -9.8 4.3 13 8 A T H > S+ 0 0 100 2,-0.2 4,-1.0 1,-0.2 -1,-0.3 0.654 112.5 59.9 -59.9 -14.7 -9.9 -9.8 8.1 14 9 A L H 4 S+ 0 0 6 -3,-0.4 5,-0.3 2,-0.2 -2,-0.2 0.979 102.4 42.3 -75.4 -77.4 -6.4 -8.7 7.4 15 10 A F H >X>S+ 0 0 9 -4,-2.1 4,-3.5 3,-0.2 5,-3.4 0.839 108.1 67.2 -35.7 -48.5 -6.7 -5.5 5.6 16 11 A K H 3<>S+ 0 0 126 -4,-1.9 5,-0.8 1,-0.3 2,-0.7 0.909 119.2 16.6 -37.5 -79.1 -9.4 -4.6 8.0 17 12 A T T 3<5S+ 0 0 96 -4,-1.0 -1,-0.3 -3,-0.2 -2,-0.2 -0.366 133.6 49.7 -95.7 52.5 -7.2 -4.3 11.1 18 13 A R T <45S- 0 0 111 -3,-2.1 -3,-0.2 -2,-0.7 -2,-0.2 0.378 132.0 -3.2-150.1 -45.4 -4.0 -4.1 9.1 19 14 A C T >X5S+ 0 0 20 -4,-3.5 3,-4.2 -5,-0.3 4,-3.8 0.611 119.8 70.7-124.3 -43.3 -4.4 -1.4 6.4 20 15 A L T 34 - 0 0 33 -2,-0.1 4,-0.7 1,-0.1 5,-0.2 -0.631 22.5-128.8-100.2 159.6 4.7 12.1 -0.2 55 50 A D T 4 S+ 0 0 138 -2,-0.2 28,-0.1 1,-0.1 -1,-0.1 0.080 107.5 50.1 -92.0 22.2 7.8 13.3 -1.9 56 51 A A T 4 S+ 0 0 7 26,-0.3 27,-0.1 24,-0.1 -1,-0.1 0.664 109.4 41.3-121.1 -54.1 9.3 9.8 -1.6 57 52 A N T >> S+ 0 0 17 25,-0.4 4,-0.8 1,-0.2 3,-0.6 0.997 118.3 44.2 -60.5 -69.9 6.7 7.4 -2.8 58 53 A I T 3< S+ 0 0 60 -4,-0.7 2,-1.1 1,-0.3 3,-0.2 0.815 107.2 65.9 -44.2 -34.2 5.5 9.3 -5.8 59 54 A K T 34 S+ 0 0 142 -5,-0.2 -1,-0.3 1,-0.2 -2,-0.1 -0.248 98.9 54.5 -85.3 46.9 9.2 9.8 -6.4 60 55 A K T <4 S- 0 0 84 -2,-1.1 -1,-0.2 -3,-0.6 3,-0.2 0.457 76.5-155.5-141.2 -47.1 9.6 6.1 -7.0 61 56 A N < - 0 0 87 -4,-0.8 2,-1.4 1,-0.2 -3,-0.1 0.793 22.4-177.6 64.4 28.6 7.2 5.1 -9.7 62 57 A V - 0 0 11 -5,-0.4 -17,-0.9 -18,-0.2 2,-0.3 -0.447 26.3-133.4 -63.4 93.5 7.3 1.6 -8.2 63 58 A L B -A 44 0A 82 -2,-1.4 -19,-0.2 -19,-0.2 6,-0.1 -0.334 22.8-139.8 -54.0 109.5 5.1 -0.1 -10.8 64 59 A W + 0 0 14 -21,-2.0 -22,-2.2 -2,-0.3 3,-0.1 -0.316 48.5 131.1 -70.9 157.4 2.8 -2.1 -8.5 65 60 A D S S- 0 0 94 -24,-0.3 -1,-0.2 -23,-0.1 -2,-0.0 0.055 74.7 -67.0-167.1 -64.8 1.8 -5.6 -9.6 66 61 A E S > S+ 0 0 7 37,-0.0 4,-2.1 -24,-0.0 5,-0.2 -0.047 120.1 37.0-166.8 -77.8 2.2 -8.2 -6.9 67 62 A N H > S+ 0 0 52 2,-0.2 4,-3.1 1,-0.2 5,-0.2 0.963 116.7 53.9 -57.8 -56.0 5.7 -9.1 -5.6 68 63 A N H >> S+ 0 0 28 1,-0.2 4,-1.2 2,-0.2 3,-0.6 0.931 107.7 49.5 -41.5 -67.6 6.9 -5.5 -5.9 69 64 A M H >> S+ 0 0 7 1,-0.3 4,-2.9 2,-0.2 3,-1.7 0.883 113.4 46.3 -38.3 -56.9 4.0 -4.2 -3.8 70 65 A S H 3X S+ 0 0 15 -4,-2.1 4,-2.6 1,-0.3 -1,-0.3 0.869 102.2 65.9 -56.3 -39.0 4.7 -6.8 -1.2 71 66 A E H S+ 0 0 0 0, 0.0 4,-1.3 0, 0.0 -1,-0.1 0.789 73.4 57.8 -75.0 -29.7 8.0 0.3 3.1 77 72 A X H 4 S+ 0 0 152 11,-0.2 5,-0.4 -3,-0.2 6,-0.2 0.530 113.6 37.3 -80.4 -8.1 10.1 2.5 5.4 78 73 A K H 4 S+ 0 0 157 -3,-0.3 -1,-0.1 -6,-0.2 -6,-0.1 0.842 117.6 43.6-101.5 -66.3 13.4 1.4 3.9 79 74 A Y H < S+ 0 0 85 -4,-1.6 -2,-0.1 -8,-0.2 -7,-0.1 0.908 113.2 57.5 -44.9 -53.9 12.6 0.9 0.2 80 75 A I S >< S- 0 0 0 -4,-1.3 2,-1.6 -5,-0.3 3,-0.8 -0.757 87.3-139.0 -87.2 113.6 10.7 4.2 0.1 81 76 A P T 3 S+ 0 0 92 0, 0.0 -3,-0.1 0, 0.0 -4,-0.1 -0.568 91.1 8.6 -75.0 89.5 13.0 7.0 1.3 82 77 A G T 3 S+ 0 0 53 -2,-1.6 2,-0.7 -5,-0.4 -25,-0.4 0.819 80.2 175.3 104.8 55.1 10.6 9.0 3.4 83 78 A T < - 0 0 10 -3,-0.8 -1,-0.2 -6,-0.2 -3,-0.0 -0.838 22.8-162.1 -96.9 113.3 7.5 6.8 3.6 84 79 A K + 0 0 179 -2,-0.7 2,-1.2 2,-0.1 -1,-0.1 0.614 60.5 117.0 -66.0 -11.2 4.9 8.3 5.9 85 80 A M > - 0 0 42 1,-0.1 2,-2.2 -9,-0.1 3,-0.5 -0.448 54.3-162.7 -63.4 95.0 3.4 4.8 5.9 86 81 A A T 3 + 0 0 68 -2,-1.2 -1,-0.1 1,-0.2 -2,-0.1 -0.509 51.3 117.2 -81.7 71.6 3.8 3.9 9.6 87 82 A F T 3 - 0 0 59 -2,-2.2 2,-0.6 1,-0.1 -1,-0.2 0.829 52.6-158.7-102.0 -51.3 3.5 0.2 9.0 88 83 A G < - 0 0 45 -3,-0.5 -11,-0.2 3,-0.0 2,-0.1 -0.471 50.4 -74.6 102.4 -59.0 6.8 -1.3 10.1 89 84 A G - 0 0 26 -2,-0.6 -15,-0.2 -14,-0.1 -14,-0.1 -0.231 20.4-126.2 134.3 136.9 6.6 -4.5 8.2 90 85 A L - 0 0 20 -17,-0.2 -16,-0.1 -2,-0.1 5,-0.1 0.849 28.5-168.4 -73.6 -35.9 4.7 -7.8 8.4 91 86 A K + 0 0 157 1,-0.1 2,-0.2 2,-0.1 3,-0.1 0.737 58.8 105.3 51.4 22.4 8.0 -9.7 8.3 92 87 A K >> - 0 0 116 1,-0.1 4,-2.0 2,-0.0 3,-1.1 -0.649 50.2-175.7-133.3 75.1 5.7 -12.7 7.8 93 88 A E H 3> S+ 0 0 117 1,-0.3 4,-3.7 -2,-0.2 5,-0.2 0.777 81.8 73.1 -39.0 -32.1 5.8 -13.7 4.2 94 89 A K H 3> S+ 0 0 170 2,-0.2 4,-0.9 1,-0.2 -1,-0.3 0.958 106.5 30.0 -48.0 -64.5 3.1 -16.1 5.2 95 90 A D H X> S+ 0 0 27 -3,-1.1 4,-3.8 1,-0.2 3,-1.4 0.928 116.6 60.6 -62.0 -47.2 0.5 -13.4 5.5 96 91 A R H 3X S+ 0 0 31 -4,-2.0 4,-1.6 1,-0.3 5,-0.4 0.872 100.2 55.7 -46.7 -43.8 2.2 -11.4 2.8 97 92 A N H 3X S+ 0 0 19 -4,-3.7 4,-1.1 -5,-0.3 -1,-0.3 0.845 115.2 38.6 -58.6 -34.8 1.6 -14.3 0.5 98 93 A D H X S+ 0 0 4 -4,-3.8 4,-4.7 2,-0.2 3,-0.9 0.944 110.8 29.8 -43.3 -76.6 -2.0 -10.2 1.4 100 95 A I H 3X S+ 0 0 2 -4,-1.6 4,-3.0 1,-0.3 5,-0.4 0.933 113.5 65.8 -50.0 -53.1 -1.5 -9.8 -2.3 101 96 A T H 3< S+ 0 0 29 -4,-1.1 4,-0.3 -5,-0.4 -1,-0.3 0.844 119.7 23.6 -35.7 -48.7 -3.4 -13.0 -2.9 102 97 A Y H XX S+ 0 0 17 -4,-3.0 4,-2.4 -3,-0.9 3,-1.6 0.864 115.3 66.6 -87.3 -43.0 -6.4 -11.2 -1.6 103 98 A L H 3X S+ 0 0 4 -4,-4.7 4,-4.5 -5,-0.4 5,-0.4 0.915 96.1 57.0 -41.9 -58.0 -5.3 -7.7 -2.2 104 99 A K H 3X S+ 0 0 117 -4,-3.0 4,-0.8 1,-0.2 -1,-0.3 0.838 111.2 45.9 -42.9 -38.8 -5.5 -8.3 -6.0 105 100 A K H X4 S+ 0 0 164 -3,-1.6 3,-1.0 -5,-0.4 -2,-0.2 0.974 113.2 45.5 -69.5 -57.4 -9.1 -9.3 -5.2 106 101 A A H 3< S+ 0 0 41 -4,-2.4 -2,-0.2 1,-0.3 -1,-0.2 0.870 114.4 51.0 -53.0 -39.4 -9.9 -6.3 -3.0 107 102 A S H 3< 0 0 11 -4,-4.5 -1,-0.3 -5,-0.3 -2,-0.2 0.755 360.0 360.0 -69.6 -25.2 -8.2 -4.2 -5.6 108 103 A E << 0 0 185 -3,-1.0 -3,-0.2 -4,-0.8 -2,-0.2 0.681 360.0 360.0-119.7 360.0 -10.4 -5.8 -8.2