==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 03-APR-07 2YSE . COMPND 2 MOLECULE: MEMBRANE-ASSOCIATED GUANYLATE KINASE, WW AND PDZ . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,M.SATO,S.KOSHIBA,T.HARADA,S.WATANABE,T.KIGAWA, . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5495.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 11.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 135 0, 0.0 2,-0.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 144.4 16.8 -1.6 8.2 2 2 A S - 0 0 121 2,-0.0 2,-0.6 0, 0.0 0, 0.0 -0.847 360.0-147.3 -99.3 121.1 17.4 -3.1 4.8 3 3 A S - 0 0 122 -2,-0.6 2,-0.3 24,-0.0 24,-0.0 -0.766 13.8-149.8 -90.2 119.4 18.7 -0.8 2.1 4 4 A G - 0 0 65 -2,-0.6 3,-0.0 1,-0.1 -1,-0.0 -0.631 10.2-145.6 -90.2 146.9 17.4 -1.6 -1.4 5 5 A S S S+ 0 0 132 -2,-0.3 2,-0.5 1,-0.1 -1,-0.1 0.963 87.0 50.3 -72.4 -54.6 19.4 -0.9 -4.5 6 6 A S + 0 0 104 1,-0.1 -1,-0.1 2,-0.0 2,-0.1 -0.748 59.8 173.8 -90.8 128.9 16.4 -0.0 -6.8 7 7 A G + 0 0 58 -2,-0.5 -1,-0.1 1,-0.1 21,-0.0 -0.492 17.0 151.3-133.9 66.3 14.0 2.5 -5.5 8 8 A L + 0 0 163 -2,-0.1 2,-0.3 2,-0.0 -1,-0.1 -0.009 40.3 123.3 -84.9 31.2 11.4 3.4 -8.2 9 9 A D + 0 0 44 19,-0.1 2,-0.3 2,-0.0 32,-0.0 -0.747 29.9 147.9 -96.6 141.4 8.9 4.1 -5.5 10 10 A S - 0 0 40 -2,-0.3 20,-0.1 1,-0.1 -2,-0.0 -0.945 63.6 -69.4-158.3 175.3 7.1 7.5 -5.3 11 11 A E - 0 0 100 -2,-0.3 33,-0.4 1,-0.1 -1,-0.1 0.866 53.8-162.7 -38.1 -49.6 3.9 9.3 -4.3 12 12 A L S S- 0 0 63 1,-0.2 -1,-0.1 2,-0.1 -3,-0.0 0.900 71.1 -48.1 62.4 42.2 2.2 7.6 -7.3 13 13 A E S S- 0 0 182 1,-0.1 -1,-0.2 2,-0.0 -2,-0.1 0.963 81.9-149.0 63.4 54.1 -0.7 10.0 -7.2 14 14 A L - 0 0 33 1,-0.1 3,-0.1 4,-0.0 -2,-0.1 -0.079 5.2-130.6 -51.9 152.6 -1.3 9.7 -3.5 15 15 A P - 0 0 95 0, 0.0 2,-0.3 0, 0.0 3,-0.1 0.958 63.3 -37.4 -69.8 -90.7 -4.9 10.1 -2.3 16 16 A A S S+ 0 0 83 1,-0.1 3,-0.1 3,-0.0 16,-0.0 -0.990 118.9 23.9-146.6 134.6 -5.0 12.6 0.6 17 17 A G S S+ 0 0 25 -2,-0.3 16,-0.6 1,-0.3 2,-0.4 0.807 85.3 129.8 84.3 31.6 -2.8 13.2 3.6 18 18 A W E -A 32 0A 49 14,-0.2 2,-0.4 15,-0.1 -1,-0.3 -0.965 32.6-177.3-123.1 136.3 0.4 11.8 2.0 19 19 A E E -A 31 0A 100 12,-0.9 12,-2.3 -2,-0.4 2,-0.8 -0.958 19.6-142.8-136.6 116.9 3.8 13.5 1.7 20 20 A K E -A 30 0A 57 -2,-0.4 2,-0.6 10,-0.2 10,-0.2 -0.679 21.2-169.7 -81.0 109.3 6.8 12.0 -0.1 21 21 A I E -A 29 0A 34 8,-3.1 8,-2.5 -2,-0.8 2,-0.6 -0.892 7.6-155.7-105.4 120.1 9.9 12.8 1.9 22 22 A E E +A 28 0A 128 -2,-0.6 6,-0.3 6,-0.2 -2,-0.0 -0.839 17.5 177.5 -97.9 117.9 13.3 12.1 0.3 23 23 A D - 0 0 52 4,-1.8 4,-0.5 -2,-0.6 -2,-0.0 -0.927 32.8-141.1-122.1 145.2 16.1 11.5 2.7 24 24 A P S S+ 0 0 128 0, 0.0 -1,-0.1 0, 0.0 4,-0.1 0.833 107.0 20.3 -69.7 -33.8 19.8 10.7 2.1 25 25 A V S S+ 0 0 129 2,-0.1 -2,-0.0 0, 0.0 0, 0.0 0.811 135.1 37.3-102.0 -45.4 20.0 8.3 5.1 26 26 A Y S S- 0 0 160 1,-0.2 2,-0.1 3,-0.0 -4,-0.0 0.799 99.8-154.0 -77.8 -30.3 16.3 7.5 5.7 27 27 A G - 0 0 20 -4,-0.5 -4,-1.8 2,-0.1 2,-0.7 -0.481 41.0 -24.1 89.9-162.6 15.5 7.4 2.0 28 28 A I E S+A 22 0A 47 -6,-0.3 2,-0.3 -2,-0.1 -6,-0.2 -0.802 72.4 156.1 -93.5 116.8 12.2 8.1 0.3 29 29 A Y E -A 21 0A 54 -8,-2.5 -8,-3.1 -2,-0.7 2,-0.5 -0.990 38.0-124.7-141.0 148.1 9.2 7.5 2.6 30 30 A Y E -AB 20 39A 0 9,-1.1 9,-0.9 -2,-0.3 2,-0.4 -0.801 22.4-156.9 -96.4 129.4 5.6 8.8 2.7 31 31 A V E -AB 19 38A 31 -12,-2.3 -12,-0.9 -2,-0.5 2,-0.6 -0.893 6.6-144.6-108.8 133.0 4.4 10.4 5.9 32 32 A D E >> -AB 18 37A 10 5,-2.4 4,-0.7 -2,-0.4 5,-0.6 -0.851 8.5-168.0 -99.4 117.6 0.7 10.6 6.9 33 33 A H T 45S+ 0 0 109 -2,-0.6 -1,-0.1 -16,-0.6 -15,-0.1 0.232 89.7 50.7 -85.4 14.4 -0.4 13.8 8.7 34 34 A I T 45S+ 0 0 105 -17,-0.4 -1,-0.2 3,-0.1 -16,-0.1 0.658 122.7 23.4-118.1 -35.1 -3.7 12.1 9.6 35 35 A N T 45S- 0 0 110 -18,-0.2 -2,-0.2 2,-0.2 3,-0.1 0.178 94.8-129.1-117.7 13.4 -2.6 8.8 11.0 36 36 A R T <5 + 0 0 202 -4,-0.7 2,-0.3 1,-0.2 -3,-0.2 0.868 64.7 134.0 36.7 52.2 0.9 9.9 12.1 37 37 A K E < -B 32 0A 73 -5,-0.6 -5,-2.4 2,-0.0 2,-0.4 -0.947 38.7-167.5-130.7 151.4 2.3 6.8 10.3 38 38 A T E +B 31 0A 82 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -0.981 16.1 155.4-143.0 127.5 5.2 6.2 8.0 39 39 A Q E -B 30 0A 64 -9,-0.9 -9,-1.1 -2,-0.4 -2,-0.0 -0.955 43.2-128.2-146.0 163.2 6.0 3.2 5.8 40 40 A Y S S+ 0 0 144 -2,-0.3 2,-0.3 -11,-0.2 -1,-0.1 0.913 84.6 90.2 -78.6 -46.2 7.9 2.2 2.6 41 41 A E S S- 0 0 101 1,-0.1 -2,-0.1 2,-0.0 -11,-0.0 -0.353 85.5-123.3 -56.6 112.9 5.0 0.4 1.0 42 42 A N > - 0 0 3 -2,-0.3 4,-1.8 1,-0.1 -1,-0.1 -0.296 8.9-142.3 -60.9 139.9 3.2 3.0 -1.1 43 43 A P H > S+ 0 0 13 0, 0.0 4,-2.7 0, 0.0 5,-0.4 0.915 97.9 60.2 -69.7 -45.2 -0.5 3.4 -0.3 44 44 A V H > S+ 0 0 32 -33,-0.4 4,-1.6 1,-0.2 5,-0.1 0.861 109.9 44.4 -51.5 -38.7 -1.7 4.0 -3.8 45 45 A L H > S+ 0 0 76 2,-0.2 4,-1.1 3,-0.2 -1,-0.2 0.936 114.5 47.5 -72.6 -48.4 -0.2 0.6 -4.7 46 46 A E H >X S+ 0 0 74 -4,-1.8 4,-2.9 2,-0.2 3,-0.9 0.979 116.8 41.3 -56.4 -62.6 -1.7 -1.3 -1.7 47 47 A A H 3X S+ 0 0 54 -4,-2.7 4,-2.0 1,-0.3 5,-0.3 0.944 118.0 46.5 -50.9 -55.9 -5.2 0.1 -2.0 48 48 A K H 3X S+ 0 0 123 -4,-1.6 4,-0.9 -5,-0.4 -1,-0.3 0.689 115.0 51.3 -61.9 -17.2 -5.2 -0.2 -5.8 49 49 A R H << S+ 0 0 172 -4,-1.1 -2,-0.2 -3,-0.9 -1,-0.2 0.851 118.3 33.1 -87.3 -40.1 -3.8 -3.7 -5.2 50 50 A K H < S+ 0 0 144 -4,-2.9 -2,-0.2 -5,-0.1 -3,-0.2 0.493 121.2 52.9 -93.0 -5.9 -6.4 -4.8 -2.7 51 51 A K H < S+ 0 0 157 -4,-2.0 -3,-0.2 -5,-0.3 -2,-0.2 0.816 93.5 66.0 -95.4 -39.6 -9.1 -2.8 -4.4 52 52 A Q S < S+ 0 0 119 -4,-0.9 -2,-0.1 -5,-0.3 -1,-0.1 0.734 73.7 122.1 -55.0 -21.7 -8.7 -4.1 -7.9 53 53 A L + 0 0 106 -4,-0.2 3,-0.1 1,-0.2 -3,-0.0 -0.218 37.0 177.0 -47.9 115.8 -9.9 -7.4 -6.5 54 54 A E + 0 0 199 1,-0.3 2,-0.4 0, 0.0 -1,-0.2 0.853 65.8 24.5 -90.9 -42.7 -13.0 -8.3 -8.5 55 55 A S S S+ 0 0 111 3,-0.0 -1,-0.3 2,-0.0 0, 0.0 -0.956 73.5 131.4-127.4 145.1 -13.8 -11.7 -6.9 56 56 A G - 0 0 47 -2,-0.4 2,-0.5 -3,-0.1 0, 0.0 -0.978 57.9 -48.0-171.6-180.0 -12.9 -13.2 -3.5 57 57 A P - 0 0 136 0, 0.0 2,-0.4 0, 0.0 -2,-0.0 -0.527 52.5-145.4 -69.8 116.9 -14.1 -15.0 -0.4 58 58 A S + 0 0 127 -2,-0.5 -3,-0.0 1,-0.2 0, 0.0 -0.695 37.3 147.5 -87.5 132.7 -17.2 -13.4 1.0 59 59 A S 0 0 124 -2,-0.4 -1,-0.2 0, 0.0 0, 0.0 0.613 360.0 360.0-127.8 -49.5 -17.7 -13.2 4.8 60 60 A G 0 0 124 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.871 360.0 360.0 100.2 360.0 -19.6 -10.1 5.7