==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 05-APR-07 2YTM . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 28 HOMOLOG; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,T.TOMIZAWA,H.ABE,K.SAITO,H.LI,M.SATO,S.KOSHIBA, . 46 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4614.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 37.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 4.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 21.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 140 0, 0.0 3,-0.1 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 102.5 7.5 -16.4 1.9 2 2 A S + 0 0 131 1,-0.3 2,-0.3 2,-0.0 3,-0.1 0.773 360.0 32.0-110.6 -53.6 9.8 -14.1 3.7 3 3 A S S S+ 0 0 120 1,-0.1 -1,-0.3 2,-0.0 0, 0.0 -0.810 96.0 52.1-110.4 150.8 12.7 -13.2 1.3 4 4 A G + 0 0 75 -2,-0.3 2,-0.7 1,-0.2 -1,-0.1 0.924 54.5 172.8 91.6 67.8 12.6 -12.9 -2.4 5 5 A S + 0 0 117 -3,-0.1 2,-0.3 11,-0.0 -1,-0.2 -0.850 33.4 96.8-112.4 96.6 9.7 -10.6 -3.4 6 6 A S + 0 0 130 -2,-0.7 2,-0.3 2,-0.0 0, 0.0 -0.953 26.1 122.9-162.9 177.4 9.8 -9.8 -7.1 7 7 A G - 0 0 61 -2,-0.3 2,-0.5 2,-0.1 -2,-0.0 -0.991 59.8 -50.9 154.5-159.5 8.3 -10.8 -10.5 8 8 A T S S+ 0 0 147 -2,-0.3 2,-0.2 2,-0.0 -2,-0.0 -0.942 89.7 38.4-120.6 112.3 6.5 -9.4 -13.5 9 9 A G S S- 0 0 48 -2,-0.5 2,-0.4 2,-0.0 -2,-0.1 -0.831 76.4 -80.7 143.3 178.7 3.3 -7.4 -13.0 10 10 A E - 0 0 148 -2,-0.2 3,-0.1 6,-0.0 -2,-0.0 -0.941 20.4-164.4-122.1 142.5 1.6 -4.8 -10.8 11 11 A K + 0 0 88 -2,-0.4 3,-0.2 3,-0.1 5,-0.1 -0.701 16.0 167.1-126.5 79.7 -0.1 -5.3 -7.4 12 12 A P S S+ 0 0 101 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.484 76.7 63.4 -69.7 -1.4 -2.2 -2.2 -6.6 13 13 A Y S S+ 0 0 186 1,-0.2 2,-0.4 -3,-0.1 9,-0.3 0.903 106.3 34.5 -88.3 -50.5 -3.9 -4.2 -3.9 14 14 A K S S- 0 0 94 -3,-0.2 -1,-0.2 7,-0.1 7,-0.2 -0.872 92.5-104.4-110.6 141.5 -0.9 -4.9 -1.6 15 15 A C B > -A 20 0A 21 5,-1.1 5,-0.5 -2,-0.4 -2,-0.0 -0.369 27.2-171.4 -62.9 134.6 2.0 -2.5 -1.0 16 16 A M T 5S+ 0 0 107 3,-0.2 -1,-0.1 2,-0.1 -11,-0.0 0.761 73.6 77.2 -96.7 -32.7 5.2 -3.5 -2.8 17 17 A E T 5S- 0 0 157 1,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.893 128.4 -7.4 -43.0 -50.4 7.5 -1.0 -1.2 18 18 A C T 5S- 0 0 66 2,-0.1 -1,-0.2 0, 0.0 -2,-0.1 0.719 99.5-114.5-115.6 -46.9 7.6 -3.2 1.9 19 19 A G T 5 + 0 0 39 1,-0.2 2,-0.4 0, 0.0 -3,-0.2 0.807 51.9 150.0 105.1 74.6 5.1 -5.9 1.4 20 20 A K B < -A 15 0A 128 -5,-0.5 -5,-1.1 2,-0.0 2,-0.3 -0.991 36.3-136.2-140.4 129.6 2.1 -5.8 3.8 21 21 A A - 0 0 76 -2,-0.4 2,-0.2 -7,-0.2 -7,-0.1 -0.641 22.6-163.3 -85.6 138.7 -1.5 -6.9 3.2 22 22 A F - 0 0 64 -2,-0.3 3,-0.1 -9,-0.3 -1,-0.0 -0.724 20.6-143.4-117.0 167.7 -4.3 -4.7 4.4 23 23 A G S S+ 0 0 88 1,-0.3 2,-0.4 -2,-0.2 -1,-0.1 0.861 84.6 26.3 -96.4 -46.7 -8.0 -5.2 5.1 24 24 A D S >> S- 0 0 104 1,-0.1 4,-1.6 0, 0.0 3,-1.3 -0.967 70.9-130.6-124.0 137.3 -9.6 -1.9 4.0 25 25 A N H 3> S+ 0 0 110 -2,-0.4 4,-2.7 1,-0.3 5,-0.5 0.899 103.5 72.3 -46.9 -48.1 -8.2 0.6 1.4 26 26 A S H 3> S+ 0 0 81 1,-0.3 4,-1.2 2,-0.2 -1,-0.3 0.851 107.3 35.4 -34.7 -51.4 -8.8 3.4 3.9 27 27 A S H <> S+ 0 0 54 -3,-1.3 4,-2.4 2,-0.2 -1,-0.3 0.829 115.1 58.7 -75.4 -33.3 -5.8 2.0 5.9 28 28 A C H X S+ 0 0 16 -4,-1.6 4,-1.3 -3,-0.2 -2,-0.2 0.971 106.4 45.2 -59.8 -57.5 -4.0 1.0 2.7 29 29 A T H X S+ 0 0 64 -4,-2.7 4,-0.6 1,-0.2 3,-0.3 0.888 112.7 53.1 -54.2 -42.3 -3.9 4.5 1.2 30 30 A Q H >X S+ 0 0 115 -4,-1.2 3,-2.2 -5,-0.5 4,-0.7 0.920 97.5 65.2 -60.3 -45.8 -2.8 5.9 4.5 31 31 A H H >X S+ 0 0 27 -4,-2.4 4,-1.2 1,-0.3 3,-0.8 0.892 91.9 63.0 -42.8 -50.4 0.1 3.4 4.8 32 32 A Q H 3X S+ 0 0 116 -4,-1.3 4,-2.5 -3,-0.3 -1,-0.3 0.834 90.9 70.4 -45.6 -37.0 1.7 5.1 1.7 33 33 A R H