==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIVIRAL PROTEIN 05-APR-05 1ZA8 . COMPND 2 MOLECULE: VHL-1; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA HEDERACEA; . AUTHOR B.CHEN,M.L.COLGRAVE,N.L.DALY,K.J.ROSENGREN,K.R.GUSTAFSON, . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2425.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 54.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 29.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 33 0, 0.0 30,-0.2 0, 0.0 25,-0.1 0.000 360.0 360.0 360.0 2.9 4.1 1.2 -4.4 2 2 A G + 0 0 78 23,-0.3 2,-0.3 1,-0.2 24,-0.1 0.869 360.0 99.2 63.4 38.8 2.0 0.4 -7.4 3 3 A E E -A 25 0A 62 22,-0.5 22,-2.7 8,-0.0 2,-0.4 -0.978 57.4-147.2-150.4 154.8 -0.6 -1.4 -5.2 4 4 A S E -A 24 0A 77 -2,-0.3 3,-0.4 20,-0.3 20,-0.3 -0.992 13.3-157.2-134.4 133.3 -4.0 -0.6 -3.8 5 5 A b + 0 0 10 18,-1.1 19,-0.2 -2,-0.4 18,-0.2 -0.174 54.4 129.1 -94.6 37.3 -5.7 -1.7 -0.5 6 6 A A S S+ 0 0 65 17,-0.4 -1,-0.2 1,-0.1 3,-0.1 0.834 80.6 29.1 -61.1 -36.7 -9.1 -0.9 -2.1 7 7 A M S S+ 0 0 168 -3,-0.4 2,-0.4 1,-0.3 -2,-0.1 0.923 134.5 18.3 -88.6 -60.2 -10.4 -4.3 -1.1 8 8 A I S S- 0 0 93 -4,-0.2 2,-2.2 2,-0.2 -1,-0.3 -0.937 74.6-125.8-117.6 137.6 -8.4 -5.2 2.0 9 9 A S S S+ 0 0 98 -2,-0.4 2,-0.3 -3,-0.1 11,-0.2 -0.195 87.5 87.6 -75.8 48.6 -6.5 -2.7 4.1 10 10 A F - 0 0 119 -2,-2.2 2,-0.3 -6,-0.1 -2,-0.2 -0.911 62.6-156.9-151.4 117.1 -3.4 -4.8 3.7 11 11 A c >> - 0 0 1 -2,-0.3 4,-0.6 1,-0.1 3,-0.5 -0.691 19.4-137.7 -95.4 148.9 -0.9 -4.5 0.9 12 12 A F G >4 S+ 0 0 174 -2,-0.3 3,-0.7 1,-0.2 4,-0.3 0.895 111.4 48.4 -69.2 -38.5 1.4 -7.2 -0.2 13 13 A T G 3>>S+ 0 0 25 1,-0.2 5,-1.9 2,-0.2 4,-0.6 0.504 92.8 81.8 -78.6 -3.6 4.2 -4.6 -0.5 14 14 A E G X45S+ 0 0 47 -3,-0.5 3,-1.0 1,-0.2 -1,-0.2 0.888 83.0 60.8 -66.9 -39.0 3.3 -3.4 3.0 15 15 A V T <<5S+ 0 0 107 -3,-0.7 -1,-0.2 -4,-0.6 -2,-0.2 0.794 104.0 49.1 -58.5 -32.9 5.3 -6.2 4.5 16 16 A I T 345S- 0 0 139 -3,-0.3 -1,-0.3 -4,-0.3 -2,-0.2 0.614 140.3 -67.4 -86.4 -11.4 8.5 -4.9 2.9 17 17 A G T <<5S+ 0 0 39 -3,-1.0 -3,-0.2 -4,-0.6 -2,-0.1 0.122 96.7 113.8 153.0 -31.7 8.0 -1.3 4.0 18 18 A a < - 0 0 8 -5,-1.9 2,-0.3 9,-0.1 -1,-0.3 -0.060 47.6-149.4 -63.3 169.9 5.0 0.2 2.2 19 19 A S E -B 26 0A 57 7,-2.4 7,-2.6 5,-0.1 2,-0.3 -0.997 18.3-110.4-147.3 139.7 1.8 1.2 4.0 20 20 A b E +B 25 0A 34 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.509 42.0 169.5 -70.6 130.9 -1.9 1.4 3.1 21 21 A K E > -B 24 0A 124 3,-2.1 3,-2.5 -2,-0.3 -16,-0.1 -0.944 63.6 -20.9-149.9 123.4 -3.2 4.9 2.8 22 22 A N T 3 S- 0 0 119 -2,-0.3 3,-0.1 1,-0.3 -16,-0.1 0.847 125.4 -52.8 43.9 47.3 -6.5 6.2 1.5 23 23 A K T 3 S+ 0 0 139 -18,-0.2 -18,-1.1 1,-0.2 -17,-0.4 0.214 124.7 96.4 78.1 -13.0 -7.0 2.9 -0.5 24 24 A V E < S-AB 4 21A 37 -3,-2.5 -3,-2.1 -20,-0.3 2,-0.7 -0.894 74.7-126.4-113.9 138.6 -3.5 3.2 -2.1 25 25 A c E +AB 3 20A 0 -22,-2.7 -22,-0.5 -2,-0.4 2,-0.3 -0.707 39.6 170.4 -83.5 115.6 -0.3 1.6 -1.0 26 26 A Y E - B 0 19A 72 -7,-2.6 -7,-2.4 -2,-0.7 2,-0.4 -0.898 27.2-157.3-127.2 156.5 2.4 4.2 -0.5 27 27 A L B > S-C 30 0B 79 3,-2.6 3,-1.5 -2,-0.3 -9,-0.1 -0.924 84.8 -23.5-135.2 104.3 5.9 4.3 1.0 28 28 A N T 3 S- 0 0 143 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 0.920 127.9 -50.8 57.9 44.9 7.2 7.8 2.1 29 29 A S T 3 S+ 0 0 95 1,-0.3 2,-0.4 0, 0.0 -1,-0.3 0.492 113.8 129.2 70.5 6.3 4.7 9.3 -0.4 30 30 A I B < C 27 0B 106 -3,-1.5 -3,-2.6 1,-0.0 -1,-0.3 -0.777 360.0 360.0 -94.7 133.0 6.1 7.0 -3.1 31 31 A S 0 0 77 -2,-0.4 -5,-0.2 -5,-0.2 -1,-0.0 -0.512 360.0 360.0 -68.2 360.0 3.6 4.9 -5.1