==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IGG BINDING DOMAIN 09-JUL-97 1ZDB . COMPND 2 MOLECULE: MINI PROTEIN A DOMAIN, Z38; . SOURCE 2 ORGANISM_SCIENTIFIC: SYNTHETIC CONSTRUCT; . AUTHOR M.A.STAROVASNIK . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3494.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 52.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 140 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-156.3 2.9 13.6 -0.3 2 2 A V - 0 0 156 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.731 360.0 -61.8 -64.6 -25.7 0.9 16.6 -1.6 3 3 A A - 0 0 77 2,-0.0 35,-0.0 35,-0.0 -1,-0.0 -0.285 63.5-171.0-179.9 -69.3 -2.0 15.4 0.7 4 4 A Q + 0 0 92 2,-0.0 34,-0.0 3,-0.0 0, 0.0 0.987 16.2 163.0 55.1 82.5 -3.1 11.8 -0.4 5 5 A S S S- 0 0 65 32,-0.0 3,-0.3 3,-0.0 4,-0.1 0.667 71.7 -32.4 -88.6-107.7 -6.3 11.0 1.6 6 6 A F S > S+ 0 0 125 32,-1.0 4,-2.8 1,-0.2 5,-0.2 0.010 97.9 119.4-104.7 23.8 -8.5 8.1 0.3 7 7 A N H > S+ 0 0 40 1,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.861 73.1 52.8 -58.9 -42.0 -7.6 8.7 -3.4 8 8 A M H 4 S+ 0 0 136 -3,-0.3 -1,-0.2 2,-0.2 4,-0.2 0.873 113.7 42.5 -64.1 -41.4 -6.0 5.2 -3.7 9 9 A Q H >4 S+ 0 0 129 1,-0.2 3,-1.1 -3,-0.2 4,-0.3 0.929 113.9 52.0 -67.5 -47.7 -9.2 3.5 -2.3 10 10 A Q H >X S+ 0 0 24 -4,-2.8 4,-2.7 1,-0.2 3,-0.6 0.636 82.3 96.7 -63.0 -19.3 -11.4 5.8 -4.4 11 11 A Q H 3X S+ 0 0 114 -4,-1.1 4,-2.2 1,-0.2 -1,-0.2 0.715 83.3 50.3 -43.7 -32.9 -9.4 4.9 -7.6 12 12 A R H <> S+ 0 0 137 -3,-1.1 4,-2.4 2,-0.2 -1,-0.2 0.900 113.1 42.1 -78.8 -42.8 -12.1 2.2 -8.4 13 13 A R H <> S+ 0 0 106 -3,-0.6 4,-2.6 -4,-0.3 -2,-0.2 0.820 116.2 53.0 -67.5 -32.1 -15.1 4.6 -8.0 14 14 A F H X S+ 0 0 61 -4,-2.7 4,-2.5 2,-0.2 -2,-0.2 0.933 110.5 45.0 -64.4 -52.6 -12.9 7.2 -9.9 15 15 A Y H X S+ 0 0 106 -4,-2.2 4,-2.8 -5,-0.2 5,-0.4 0.910 113.3 52.1 -56.2 -47.8 -12.3 4.7 -12.7 16 16 A E H X S+ 0 0 101 -4,-2.4 4,-2.7 2,-0.2 -2,-0.2 0.945 111.4 45.6 -55.8 -54.2 -16.0 3.8 -12.7 17 17 A A H < S+ 0 0 0 -4,-2.6 -2,-0.2 1,-0.2 -1,-0.2 0.926 116.4 45.7 -53.9 -52.8 -17.1 7.5 -13.0 18 18 A L H < S+ 0 0 105 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.924 123.5 31.2 -57.5 -54.1 -14.5 8.2 -15.8 19 19 A H H < S+ 0 0 107 -4,-2.8 -2,-0.2 -5,-0.2 -3,-0.2 0.903 94.9 92.5 -77.1 -47.0 -15.2 5.1 -17.9 20 20 A D < - 0 0 50 -4,-2.7 3,-0.2 -5,-0.4 8,-0.1 -0.351 51.3-168.5 -63.3 117.5 -18.9 4.4 -17.4 21 21 A P S S+ 0 0 109 0, 0.0 -1,-0.2 0, 0.0 4,-0.1 0.742 82.0 69.6 -77.5 -25.1 -21.1 6.2 -20.1 22 22 A N S S+ 0 0 130 2,-0.1 2,-0.5 0, 0.0 -2,-0.1 0.901 86.8 74.1 -60.2 -43.1 -24.3 5.5 -18.2 23 23 A L S S- 0 0 25 -3,-0.2 0, 0.0 -7,-0.2 0, 0.0 -0.637 92.4-134.5 -67.7 120.5 -23.2 8.0 -15.5 24 24 A N > - 0 0 79 -2,-0.5 4,-2.8 1,-0.1 5,-0.2 -0.080 25.2 -89.9 -74.6 177.5 -23.7 11.3 -17.3 25 25 A E H > S+ 0 0 149 1,-0.2 4,-2.8 2,-0.2 5,-0.3 0.892 125.8 49.0 -55.8 -47.3 -21.2 14.3 -17.4 26 26 A E H > S+ 0 0 160 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.946 114.1 44.8 -60.2 -52.7 -22.6 15.9 -14.3 27 27 A Q H > S+ 0 0 83 2,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.931 116.4 47.6 -55.1 -52.2 -22.5 12.7 -12.2 28 28 A R H X S+ 0 0 51 -4,-2.8 4,-2.8 2,-0.2 -2,-0.2 0.964 113.9 44.0 -54.1 -63.1 -19.0 11.8 -13.5 29 29 A N H X S+ 0 0 97 -4,-2.8 4,-2.7 1,-0.2 -1,-0.2 0.836 112.4 54.4 -57.5 -37.0 -17.4 15.3 -12.9 30 30 A A H X S+ 0 0 52 -4,-2.4 4,-2.5 -5,-0.3 -1,-0.2 0.947 112.4 42.6 -60.2 -50.8 -19.1 15.5 -9.5 31 31 A K H X S+ 0 0 56 -4,-2.4 4,-2.6 2,-0.2 -2,-0.2 0.953 114.9 50.1 -59.0 -53.4 -17.6 12.1 -8.4 32 32 A I H X S+ 0 0 17 -4,-2.8 4,-2.5 1,-0.2 5,-0.2 0.910 113.3 46.4 -50.9 -51.2 -14.1 13.0 -10.0 33 33 A K H X S+ 0 0 156 -4,-2.7 4,-2.4 1,-0.2 -1,-0.2 0.929 113.0 48.5 -59.0 -51.0 -14.1 16.4 -8.2 34 34 A S H X S+ 0 0 76 -4,-2.5 4,-2.1 1,-0.2 -1,-0.2 0.875 113.2 48.3 -57.9 -42.0 -15.1 14.9 -4.8 35 35 A I H < S+ 0 0 11 -4,-2.6 -2,-0.2 2,-0.2 -1,-0.2 0.926 112.0 47.3 -66.6 -48.6 -12.5 12.2 -5.1 36 36 A R H < S+ 0 0 171 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.862 112.0 51.7 -61.2 -38.1 -9.7 14.6 -6.0 37 37 A D H < 0 0 144 -4,-2.4 -2,-0.2 1,-0.3 -1,-0.2 0.898 360.0 360.0 -62.9 -43.9 -10.8 16.8 -3.1 38 38 A D < 0 0 57 -4,-2.1 -32,-1.0 -5,-0.2 -1,-0.3 -0.399 360.0 360.0 -88.0 360.0 -10.6 13.8 -0.8