==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-APR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 02-JAN-13 3ZI3 . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.ZAKOVA,E.KLETVIKOVA,V.VEVERKA,M.LEPSIK,C.J.WATSON,J.P.TURK . 41 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3202.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 61.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 12.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 36.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 59 0, 0.0 4,-2.4 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0-159.6 -4.3 -2.8 -4.9 2 2 A I H > + 0 0 37 1,-0.2 4,-2.3 2,-0.2 5,-0.5 0.826 360.0 51.0 -63.5 -34.7 -6.1 -5.2 -7.2 3 3 A V H >>S+ 0 0 81 1,-0.2 5,-2.2 2,-0.2 4,-2.2 0.934 112.7 45.6 -70.9 -44.1 -3.7 -8.2 -6.6 4 4 A E H 4>S+ 0 0 134 3,-0.2 5,-2.1 1,-0.2 -2,-0.2 0.915 119.2 42.4 -59.3 -40.2 -4.0 -7.9 -2.8 5 5 A Q H <5S+ 0 0 62 -4,-2.4 -2,-0.2 3,-0.2 -1,-0.2 0.837 129.9 21.9 -78.2 -32.7 -7.8 -7.5 -3.0 6 6 A a H <5S+ 0 0 0 -4,-2.3 21,-3.4 -5,-0.2 5,-0.4 0.651 131.9 33.2-113.4 -23.0 -8.6 -10.2 -5.6 7 7 A b T <5S+ 0 0 26 -4,-2.2 -3,-0.2 -5,-0.5 -4,-0.1 0.848 127.2 32.1-102.1 -57.1 -5.7 -12.5 -5.6 8 8 A T T - 0 0 65 -2,-0.3 4,-2.4 1,-0.1 5,-0.2 -0.446 33.6-100.2 -88.1 170.9 -16.6 -8.9 -5.1 13 13 A L H > S+ 0 0 87 1,-0.2 4,-2.3 2,-0.2 5,-0.1 0.896 121.7 52.4 -58.6 -44.7 -17.8 -7.8 -8.5 14 14 A Y H > S+ 0 0 183 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.907 109.5 49.9 -71.8 -25.0 -18.1 -4.2 -7.4 15 15 A Q H >4 S+ 0 0 60 2,-0.2 3,-0.7 1,-0.2 4,-0.4 0.928 111.6 48.4 -67.4 -46.9 -14.5 -4.1 -6.1 16 16 A L H >< S+ 0 0 9 -4,-2.4 3,-2.0 1,-0.2 -2,-0.2 0.917 106.1 58.2 -58.9 -39.0 -13.2 -5.6 -9.3 17 17 A E H >< S+ 0 0 73 -4,-2.3 3,-1.5 1,-0.3 -1,-0.2 0.685 90.4 70.9 -66.9 -20.7 -15.2 -3.1 -11.3 18 18 A N T << S+ 0 0 130 -4,-0.9 -1,-0.3 -3,-0.7 -2,-0.2 0.737 96.4 53.6 -66.8 -19.3 -13.4 -0.3 -9.6 19 19 A Y T < S+ 0 0 82 -3,-2.0 -1,-0.3 -4,-0.4 -2,-0.2 0.299 75.1 136.1 -96.2 3.2 -10.3 -1.3 -11.6 20 20 A c < 0 0 39 -3,-1.5 17,-0.0 19,-0.1 -3,-0.0 -0.358 360.0 360.0 -57.2 137.9 -12.1 -1.1 -15.0 21 21 A N 0 0 230 21,-0.3 -1,-0.0 15,-0.1 15,-0.0 0.915 360.0 360.0 49.4 360.0 -9.7 0.7 -17.5 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 2 B V 0 0 175 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 113.1 -14.1 -23.8 -6.1 24 3 B N - 0 0 122 1,-0.1 0, 0.0 2,-0.0 0, 0.0 -0.560 360.0-173.8 -67.7 118.7 -11.2 -21.3 -5.9 25 4 B Q + 0 0 121 -2,-0.4 -14,-0.4 2,-0.0 2,-0.3 0.417 51.4 104.4-102.0 5.6 -12.5 -17.8 -5.5 26 5 B H - 0 0 68 -16,-0.1 2,-0.6 -18,-0.1 -19,-0.2 -0.613 58.5-151.6 -83.3 146.6 -9.2 -16.1 -5.8 27 6 B L + 0 0 48 -21,-3.4 2,-0.4 -18,-0.4 -21,-0.1 -0.958 26.1 161.7-125.5 109.1 -8.3 -14.4 -9.0 28 7 B b > - 0 0 48 -2,-0.6 3,-1.5 -21,-0.1 4,-0.4 -0.940 45.7 -20.0-126.3 153.7 -4.6 -14.3 -9.9 29 8 B G T >> S- 0 0 56 -2,-0.4 4,-1.8 1,-0.3 3,-0.8 -0.269 129.6 -3.0 55.8-136.5 -2.4 -13.7 -12.9 30 9 B S H 3> S+ 0 0 91 1,-0.2 4,-2.6 2,-0.2 -1,-0.3 0.810 131.9 62.3 -71.5 -20.2 -4.1 -14.2 -16.2 31 10 B H H <> S+ 0 0 135 -3,-1.5 4,-2.3 2,-0.2 -1,-0.2 0.873 104.8 49.2 -63.8 -32.1 -7.4 -15.4 -14.4 32 11 B L H <> S+ 0 0 11 -3,-0.8 4,-2.2 -4,-0.4 -2,-0.2 0.924 110.8 48.6 -71.3 -42.3 -7.5 -11.9 -12.9 33 12 B V H X S+ 0 0 63 -4,-1.8 4,-2.7 2,-0.2 -2,-0.2 0.943 111.7 50.3 -61.9 -42.1 -6.9 -10.3 -16.4 34 13 B E H X S+ 0 0 106 -4,-2.6 4,-2.9 1,-0.2 -2,-0.2 0.917 108.4 52.5 -66.7 -40.6 -9.7 -12.5 -17.9 35 14 B A H X S+ 0 0 14 -4,-2.3 4,-2.6 2,-0.2 -1,-0.2 0.888 110.6 47.4 -57.2 -44.3 -12.1 -11.5 -15.1 36 15 B L H X S+ 0 0 34 -4,-2.2 4,-2.8 2,-0.2 6,-0.5 0.946 110.5 51.4 -63.3 -40.0 -11.5 -7.8 -15.8 37 16 B Y H X S+ 0 0 136 -4,-2.7 4,-1.1 1,-0.2 5,-0.2 0.915 113.7 47.2 -63.6 -45.9 -11.9 -8.4 -19.5 38 17 B L H < S+ 0 0 126 -4,-2.9 -1,-0.2 -5,-0.2 -2,-0.2 0.943 120.0 33.2 -59.0 -54.9 -15.2 -10.1 -18.7 39 18 B V H < S+ 0 0 42 -4,-2.6 -2,-0.2 1,-0.2 -1,-0.2 0.766 124.8 41.4 -78.3 -22.2 -16.7 -7.6 -16.3 40 19 B c H < S- 0 0 37 -4,-2.8 -1,-0.2 -5,-0.2 -3,-0.2 0.567 100.8-131.6 -96.9 -17.3 -15.3 -4.4 -17.8 41 20 B G < 0 0 71 -4,-1.1 -4,-0.2 -5,-0.4 -3,-0.2 0.634 360.0 360.0 69.7 21.1 -16.0 -5.6 -21.3 42 21 B E 0 0 69 -6,-0.5 -21,-0.3 -5,-0.2 -2,-0.1 -0.835 360.0 360.0-169.9 360.0 -12.5 -4.6 -22.5