==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 10-MAY-05 1ZMK . COMPND 2 MOLECULE: NEUTROPHIL DEFENSIN 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.LUBKOWSKI,A.PRAHL,W.LU . 58 2 6 6 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4227.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 65.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 27 46.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 47 0, 0.0 2,-0.3 0, 0.0 28,-0.2 0.000 360.0 360.0 360.0 158.4 9.8 33.8 37.1 2 2 A Y E -A 28 0A 114 26,-2.7 26,-3.3 57,-0.0 2,-0.5 -0.956 360.0-125.9-144.0 154.6 11.7 33.6 40.4 3 3 A b E +A 27 0A 25 -2,-0.3 2,-0.3 24,-0.2 24,-0.2 -0.956 41.2 179.8-104.7 127.1 14.4 31.6 42.1 4 4 A R E -A 26 0A 75 22,-2.6 22,-3.0 -2,-0.5 14,-0.1 -0.937 21.2-118.2-133.5 147.2 13.2 30.4 45.5 5 5 A I S S- 0 0 80 -2,-0.3 20,-0.1 20,-0.2 -2,-0.0 -1.000 90.0 -1.4-127.6 134.9 14.4 28.3 48.5 6 6 A P S S- 0 0 127 0, 0.0 2,-0.3 0, 0.0 -1,-0.2 -1.000 126.9 -25.3 -90.4 -1.5 13.2 25.8 49.6 7 7 A A - 0 0 53 19,-0.1 -2,-0.1 -4,-0.0 21,-0.1 -0.978 65.6 -81.7-162.4 161.8 10.4 25.6 47.1 8 8 A c - 0 0 32 -2,-0.3 2,-0.3 -4,-0.1 6,-0.1 -0.295 52.2-105.3 -64.6 161.3 8.1 27.4 44.7 9 9 A I > - 0 0 94 1,-0.1 3,-2.7 4,-0.1 -1,-0.1 -0.686 46.5 -85.1 -87.6 146.2 5.0 29.1 46.1 10 10 A A T 3 S+ 0 0 103 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 -0.294 120.9 35.2 -52.0 131.1 1.5 27.4 45.6 11 11 A G T 3 S+ 0 0 86 1,-0.5 -1,-0.3 -3,-0.0 2,-0.2 -0.013 101.6 96.7 105.6 -27.0 0.3 28.6 42.2 12 12 A E < - 0 0 45 -3,-2.7 -1,-0.5 16,-0.0 2,-0.4 -0.502 67.0-134.8 -88.2 163.8 3.7 28.5 40.7 13 13 A R - 0 0 162 16,-2.7 16,-2.7 -2,-0.2 2,-0.7 -0.974 15.4-125.8-119.7 134.4 5.3 25.8 38.6 14 14 A R E +B 28 0A 144 -2,-0.4 14,-0.2 14,-0.2 3,-0.1 -0.693 31.0 172.7 -77.0 115.7 8.8 24.5 39.1 15 15 A Y E - 0 0 99 12,-2.7 36,-0.4 -2,-0.7 2,-0.3 0.501 59.5 -61.0-102.0 -10.4 10.5 24.7 35.7 16 16 A X E -B 27 0A 36 11,-1.1 11,-2.3 34,-0.1 2,-0.3 -0.952 66.6 -58.4 164.1-141.6 14.0 23.8 36.9 17 17 A T E -BC 26 49A 25 32,-1.9 32,-3.3 -2,-0.3 2,-0.3 -0.898 28.1-146.3-137.3 154.7 16.8 25.0 39.1 18 18 A b E -BC 25 48A 0 7,-2.3 7,-2.7 -2,-0.3 2,-0.5 -0.936 4.8-152.9-120.7 150.6 19.0 28.0 39.8 19 19 A I E +BC 24 47A 73 28,-2.4 28,-2.4 -2,-0.3 2,-0.3 -0.996 34.1 144.6-117.6 124.7 22.5 28.2 41.0 20 20 A Y E > +B 23 0A 67 3,-2.0 3,-1.4 -2,-0.5 -2,-0.1 -0.944 64.4 1.3-161.6 132.9 23.3 31.5 42.9 21 21 A Q T 3 S- 0 0 140 -2,-0.3 3,-0.1 1,-0.3 24,-0.0 0.858 126.8 -59.2 55.5 38.0 25.6 32.3 45.9 22 22 A G T 3 S+ 0 0 82 1,-0.2 2,-0.3 0, 0.0 -1,-0.3 0.686 115.1 106.8 71.8 17.9 26.7 28.7 46.2 23 23 A R E < - B 0 20A 160 -3,-1.4 -3,-2.0 2,-0.0 2,-0.5 -0.918 68.0-122.7-127.5 157.1 23.2 27.4 46.7 24 24 A L E - B 0 19A 121 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.863 32.9-174.7-100.0 128.1 20.6 25.5 44.7 25 25 A W E - B 0 18A 57 -7,-2.7 -7,-2.3 -2,-0.5 2,-0.4 -0.843 29.1-109.7-119.8 154.1 17.2 27.2 44.2 26 26 A A E -AB 4 17A 8 -22,-3.0 -22,-2.6 -2,-0.3 2,-0.6 -0.707 28.0-137.5 -76.7 131.9 13.9 26.2 42.6 27 27 A F E -AB 3 16A 8 -11,-2.3 -12,-2.7 -2,-0.4 -11,-1.1 -0.883 31.9-173.0 -93.1 115.2 13.2 28.0 39.3 28 28 A c E AB 2 14A 0 -26,-3.3 -26,-2.7 -2,-0.6 -14,-0.2 -0.945 360.0 360.0-122.8 130.6 9.5 29.0 39.6 29 29 A a 0 0 70 -16,-2.7 -16,-2.7 -2,-0.4 -18,-0.0 -0.907 360.0 360.0-131.1 360.0 7.2 30.5 37.1 30 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 31 1 B d 0 0 32 0, 0.0 2,-0.3 0, 0.0 28,-0.2 0.000 360.0 360.0 360.0 166.0 12.9 37.9 36.5 32 2 B Y E -D 58 0A 134 26,-2.7 26,-3.1 2,-0.0 2,-0.5 -0.988 360.0-126.2-142.6 150.2 13.9 35.9 33.4 33 3 B e E +D 57 0A 24 -2,-0.3 2,-0.3 24,-0.2 24,-0.2 -0.839 43.0 179.3 -93.7 129.0 16.3 33.3 32.2 34 4 B R E -D 56 0A 60 22,-2.7 22,-2.8 -2,-0.5 14,-0.1 -0.959 23.6-123.0-135.2 150.2 18.2 34.6 29.2 35 5 B I S S- 0 0 100 -2,-0.3 20,-0.1 20,-0.2 -2,-0.0 -0.996 88.6 -0.9-128.0 130.0 20.9 33.7 26.7 36 6 B P S S- 0 0 123 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.977 124.3 -21.6-100.0 -3.9 23.4 35.3 26.2 37 7 B A - 0 0 58 19,-0.1 2,-0.1 21,-0.0 21,-0.1 -0.959 66.0 -85.4-159.2 164.7 23.0 38.3 28.6 38 8 B f - 0 0 35 -2,-0.3 2,-0.2 4,-0.1 3,-0.1 -0.375 47.3-113.1 -71.8 161.3 20.5 40.3 30.6 39 9 B I > - 0 0 94 1,-0.2 3,-2.1 -2,-0.1 -1,-0.1 -0.516 51.7 -64.0 -92.8 171.0 18.8 43.2 28.9 40 10 B A T 3 S+ 0 0 100 1,-0.3 -1,-0.2 -2,-0.2 3,-0.1 -0.249 124.4 25.6 -56.6 137.8 19.3 46.9 29.9 41 11 B G T 3 S+ 0 0 87 1,-0.3 -1,-0.3 -3,-0.1 2,-0.2 0.124 100.1 107.8 95.8 -19.9 18.2 47.5 33.5 42 12 B E < - 0 0 38 -3,-2.1 2,-0.4 16,-0.0 -1,-0.3 -0.544 54.5-148.7 -96.6 155.7 18.7 44.0 34.7 43 13 B R - 0 0 163 16,-2.4 16,-2.8 -2,-0.2 2,-0.4 -0.966 21.6-121.6-119.9 138.5 21.2 42.5 37.0 44 14 B R E - E 0 58A 117 -2,-0.4 14,-0.2 14,-0.2 2,-0.2 -0.693 24.3-177.4 -81.4 131.6 22.5 38.9 36.7 45 15 B Y E - 0 0 88 12,-2.9 2,-0.2 -2,-0.4 -26,-0.1 -0.694 55.5 -71.6-125.8 71.5 21.9 36.7 39.8 46 16 B X E S- 0 0 36 -2,-0.2 11,-2.1 -28,-0.1 2,-0.3 -0.453 72.8 -44.3 80.6-146.7 23.5 33.4 38.9 47 17 B T E -CE 19 56A 28 -28,-2.4 -28,-2.4 9,-0.3 2,-0.4 -0.950 32.8-137.6-137.6 140.5 22.3 30.8 36.5 48 18 B e E -CE 18 55A 0 7,-2.4 7,-2.1 -2,-0.3 2,-0.6 -0.863 6.0-155.8 -97.1 140.4 19.2 28.9 35.4 49 19 B I E +CE 17 54A 68 -32,-3.3 -32,-1.9 -2,-0.4 2,-0.4 -0.972 36.1 156.5-107.7 106.6 19.2 25.2 34.7 50 20 B Y E > - E 0 53A 70 3,-2.3 3,-1.8 -2,-0.6 -34,-0.1 -0.962 59.2 -19.5-146.0 120.7 16.2 24.9 32.3 51 21 B Q T 3 S- 0 0 132 -36,-0.4 3,-0.1 -2,-0.4 -35,-0.1 0.813 123.6 -51.5 50.2 46.1 15.4 22.3 29.7 52 22 B G T 3 S+ 0 0 79 1,-0.3 2,-0.3 0, 0.0 -1,-0.3 0.510 119.2 95.9 76.7 7.2 18.9 21.0 29.4 53 23 B R E < - E 0 50A 161 -3,-1.8 -3,-2.3 2,-0.0 2,-0.4 -0.852 69.1-123.8-122.1 160.8 20.5 24.4 28.8 54 24 B L E + E 0 49A 119 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.887 33.4 179.3-104.5 137.2 22.3 26.9 31.1 55 25 B W E - E 0 48A 63 -7,-2.1 -7,-2.4 -2,-0.4 2,-0.4 -0.902 33.8-104.4-134.3 154.0 21.0 30.5 31.2 56 26 B A E -DE 34 47A 7 -22,-2.8 -22,-2.7 -2,-0.3 2,-0.6 -0.721 32.5-135.8 -74.9 133.2 21.7 33.8 32.9 57 27 B F E -D 33 0A 11 -11,-2.1 -12,-2.9 -2,-0.4 2,-0.4 -0.846 31.3-172.9 -92.4 114.8 19.2 34.5 35.6 58 28 B f E DE 32 44A 0 -26,-3.1 -26,-2.7 -2,-0.6 -14,-0.2 -0.927 360.0 360.0-119.5 132.2 18.3 38.2 35.1 59 29 B d 0 0 67 -16,-2.8 -16,-2.4 -2,-0.4 -21,-0.0 -0.991 360.0 360.0-133.5 360.0 16.2 40.5 37.3