==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ZINC FINGER DNA BINDING DOMAIN 22-AUG-91 5ZNF . COMPND 2 MOLECULE: ZINC FINGER; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.KOCHOYAN,H.T.KEUTMANN,M.A.WEISS . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2748.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 30.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 214 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 61.6 -7.4 -5.3 12.2 2 2 A T - 0 0 96 12,-0.0 2,-0.3 13,-0.0 11,-0.2 -0.932 360.0-147.8-131.2 154.8 -6.5 -2.8 9.5 3 3 A Y E -A 12 0A 95 9,-1.6 9,-2.4 -2,-0.3 2,-0.3 -0.919 13.6-151.6-122.5 149.8 -3.1 -1.9 8.0 4 4 A Q E -A 11 0A 87 -2,-0.3 2,-0.3 7,-0.2 7,-0.2 -0.880 14.5-119.6-125.2 156.7 -2.0 1.6 6.7 5 5 A C - 0 0 6 5,-1.8 14,-0.0 -2,-0.3 13,-0.0 -0.737 11.6-154.1 -92.0 138.4 0.4 2.9 4.0 6 6 A Q S S+ 0 0 140 -2,-0.3 3,-0.1 1,-0.1 -1,-0.1 -0.233 88.4 54.7-109.4 45.0 3.2 5.2 5.2 7 7 A Y S S- 0 0 135 1,-0.4 2,-0.1 3,-0.1 -1,-0.1 0.459 124.8 -6.2-131.3 -55.0 3.7 7.0 1.8 8 8 A C S S- 0 0 54 2,-0.1 -1,-0.4 0, 0.0 14,-0.0 -0.207 89.5 -85.3-123.4-147.8 0.1 8.2 1.2 9 9 A E S S+ 0 0 134 -2,-0.1 2,-0.3 -3,-0.1 -3,-0.1 -0.176 71.6 127.9-127.9 44.8 -3.1 7.6 3.0 10 10 A Y - 0 0 87 8,-0.0 -5,-1.8 -5,-0.0 2,-0.3 -0.803 37.0-162.1 -99.9 143.6 -4.6 4.3 1.7 11 11 A R E -A 4 0A 111 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -0.823 1.2-155.2-121.8 161.2 -5.6 1.5 4.2 12 12 A S E -A 3 0A 8 -9,-2.4 -9,-1.6 -2,-0.3 3,-0.2 -0.858 23.6-150.6-133.4 168.9 -6.3 -2.3 3.8 13 13 A A S S+ 0 0 73 1,-0.3 2,-0.5 -2,-0.3 -1,-0.1 0.685 97.1 39.9-105.1 -35.6 -8.2 -5.2 5.3 14 14 A D S >> S- 0 0 92 1,-0.1 3,-2.1 -11,-0.1 4,-1.0 -0.974 83.3-134.6-121.7 112.7 -5.7 -7.9 4.2 15 15 A S H 3> S+ 0 0 66 -2,-0.5 4,-2.7 1,-0.3 5,-0.2 0.738 103.9 62.9 -34.7 -38.6 -2.0 -6.9 4.4 16 16 A S H 3> S+ 0 0 63 2,-0.2 4,-2.8 1,-0.2 -1,-0.3 0.928 99.0 54.6 -58.6 -44.0 -1.4 -8.3 0.9 17 17 A N H <> S+ 0 0 72 -3,-2.1 4,-2.9 1,-0.2 -1,-0.2 0.957 110.4 46.8 -51.2 -54.6 -3.8 -5.7 -0.6 18 18 A L H X S+ 0 0 23 -4,-1.0 4,-2.3 2,-0.2 5,-0.3 0.951 110.3 51.5 -53.3 -57.1 -1.7 -3.0 1.1 19 19 A K H X S+ 0 0 155 -4,-2.7 4,-2.5 1,-0.2 -2,-0.2 0.934 112.4 46.9 -46.0 -55.3 1.6 -4.5 -0.2 20 20 A T H X S+ 0 0 72 -4,-2.8 4,-2.3 2,-0.2 5,-0.3 0.939 108.1 56.4 -53.9 -53.1 0.2 -4.6 -3.7 21 21 A H H >X S+ 0 0 24 -4,-2.9 4,-2.0 1,-0.2 3,-0.6 0.935 111.3 42.0 -46.0 -59.1 -1.1 -1.0 -3.4 22 22 A I H 3X S+ 0 0 23 -4,-2.3 4,-2.5 1,-0.2 5,-0.3 0.900 113.2 55.0 -57.2 -40.7 2.5 0.4 -2.5 23 23 A K H 3< S+ 0 0 132 -4,-2.5 -1,-0.2 -5,-0.3 -2,-0.2 0.824 119.1 32.3 -61.3 -32.8 3.9 -1.9 -5.2 24 24 A T H << S+ 0 0 82 -4,-2.3 -1,-0.2 -3,-0.6 -2,-0.2 0.550 130.1 35.4-100.7 -12.3 1.6 -0.3 -7.9 25 25 A K H < S- 0 0 116 -4,-2.0 -3,-0.2 -5,-0.3 -2,-0.2 0.746 134.6 -0.9-111.6 -37.7 1.4 3.2 -6.4 26 26 A H S < S+ 0 0 49 -4,-2.5 3,-0.4 -5,-0.4 -3,-0.2 0.609 96.4 90.5-117.3 -87.3 4.8 4.0 -4.9 27 27 A S S S- 0 0 51 -5,-0.3 -1,-0.1 1,-0.2 -5,-0.0 0.208 109.2 -74.9 -19.4 73.2 7.6 1.3 -5.1 28 28 A K + 0 0 181 1,-0.1 -1,-0.2 -3,-0.1 -2,-0.1 0.786 64.6 162.3 20.4 99.8 9.0 2.5 -8.4 29 29 A E 0 0 86 -3,-0.4 -1,-0.1 -4,-0.1 -2,-0.1 0.763 360.0 360.0-100.6 -38.7 6.7 1.4 -11.3 30 30 A K 0 0 221 0, 0.0 -1,-0.0 0, 0.0 -2,-0.0 0.419 360.0 360.0 10.4 360.0 8.3 3.9 -13.8