==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 19-MAY-05 1ZRJ . COMPND 2 MOLECULE: E1B-55KDA-ASSOCIATED PROTEIN 5 ISOFORM C; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.SUZUKI,Y.MUTO,M.INOUE,T.KIGAWA,T.TERADA,M.SHIROUZU, . 50 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4465.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 56.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 38.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -6 A G 0 0 138 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 166.5 26.3 -2.2 -8.3 2 -5 A S - 0 0 119 2,-0.1 0, 0.0 0, 0.0 0, 0.0 -0.961 360.0-134.6-126.1 115.7 23.2 -4.0 -9.5 3 -4 A S S S+ 0 0 116 -2,-0.5 0, 0.0 3,-0.0 0, 0.0 0.058 71.3 20.5 -55.8 173.0 22.6 -4.6 -13.2 4 -3 A G S S- 0 0 72 3,-0.0 2,-0.2 0, 0.0 -2,-0.1 -0.139 105.3 -49.9 60.8-159.4 19.2 -4.0 -14.8 5 -2 A S S S- 0 0 121 1,-0.3 -2,-0.0 0, 0.0 0, 0.0 -0.543 76.3 -57.5-106.5 173.7 16.7 -1.7 -13.1 6 -1 A S - 0 0 120 -2,-0.2 -1,-0.3 1,-0.1 -3,-0.0 0.116 43.6-133.3 -42.4 163.2 15.3 -1.5 -9.5 7 0 A G + 0 0 71 -3,-0.1 2,-0.9 2,-0.0 -1,-0.1 -0.316 53.2 136.3-121.5 50.2 13.6 -4.6 -8.2 8 1 A M - 0 0 108 1,-0.0 2,-1.5 4,-0.0 3,-0.2 -0.790 29.4-174.2-101.2 93.5 10.5 -3.2 -6.6 9 2 A D >> + 0 0 110 -2,-0.9 3,-1.0 1,-0.2 4,-0.9 -0.631 6.1 177.6 -88.6 81.7 7.6 -5.5 -7.6 10 3 A V G >4 S+ 0 0 14 -2,-1.5 3,-0.6 1,-0.3 -1,-0.2 0.821 79.7 62.1 -52.3 -32.7 4.6 -3.5 -6.2 11 4 A R G 34 S+ 0 0 147 1,-0.2 -1,-0.3 -3,-0.2 7,-0.1 0.902 94.5 59.3 -61.3 -42.7 2.4 -6.3 -7.7 12 5 A R G <4 S+ 0 0 207 -3,-1.0 2,-0.5 25,-0.0 -1,-0.2 0.803 85.5 96.7 -56.8 -29.5 4.1 -8.9 -5.5 13 6 A L S << S- 0 0 34 -4,-0.9 5,-0.1 -3,-0.6 24,-0.0 -0.503 79.5-129.8 -67.5 116.7 2.9 -6.8 -2.5 14 7 A K > - 0 0 128 -2,-0.5 4,-2.1 1,-0.1 5,-0.2 0.091 31.3 -91.6 -56.1 176.7 -0.4 -8.3 -1.3 15 8 A V H > S+ 0 0 71 1,-0.2 4,-2.3 2,-0.2 5,-0.1 0.850 128.6 53.4 -61.9 -35.1 -3.5 -6.1 -0.7 16 9 A N H > S+ 0 0 83 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.901 107.7 49.8 -67.1 -42.1 -2.5 -5.6 2.9 17 10 A E H > S+ 0 0 91 1,-0.2 4,-1.9 2,-0.2 -2,-0.2 0.920 114.6 43.8 -63.0 -45.4 1.0 -4.4 1.9 18 11 A L H X S+ 0 0 0 -4,-2.1 4,-3.3 1,-0.2 5,-0.3 0.874 110.4 56.3 -67.8 -38.2 -0.4 -1.9 -0.6 19 12 A R H X S+ 0 0 124 -4,-2.3 4,-2.2 -5,-0.2 -1,-0.2 0.903 108.8 46.7 -60.5 -43.0 -3.1 -0.8 1.8 20 13 A E H X S+ 0 0 108 -4,-2.0 4,-2.1 2,-0.2 -1,-0.2 0.925 116.1 44.3 -65.7 -46.0 -0.5 0.1 4.5 21 14 A E H X S+ 0 0 84 -4,-1.9 4,-1.2 2,-0.2 6,-0.2 0.950 113.8 49.2 -64.0 -50.8 1.7 1.9 2.0 22 15 A L H ><>S+ 0 0 0 -4,-3.3 5,-3.3 1,-0.2 3,-0.5 0.905 111.4 50.5 -55.6 -44.5 -1.2 3.8 0.3 23 16 A Q H ><5S+ 0 0 115 -4,-2.2 3,-1.9 -5,-0.3 -1,-0.2 0.910 107.3 52.8 -61.1 -44.0 -2.5 4.8 3.7 24 17 A R H 3<5S+ 0 0 209 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.722 111.7 48.1 -64.7 -20.7 0.9 6.1 4.8 25 18 A R T <<5S- 0 0 111 -4,-1.2 -1,-0.3 -3,-0.5 -2,-0.2 0.176 114.9-116.5-104.0 14.9 0.9 8.2 1.6 26 19 A G T < 5 + 0 0 70 -3,-1.9 2,-0.3 1,-0.2 -3,-0.2 0.742 68.6 146.2 56.8 22.5 -2.6 9.5 2.2 27 20 A L < - 0 0 36 -5,-3.3 -1,-0.2 -6,-0.2 -2,-0.1 -0.685 58.3 -93.7 -93.3 145.2 -3.6 7.6 -1.0 28 21 A D - 0 0 81 -2,-0.3 -1,-0.1 1,-0.1 11,-0.0 -0.219 26.9-158.0 -55.0 140.7 -7.0 6.0 -1.5 29 22 A T + 0 0 38 -7,-0.1 2,-0.2 -3,-0.1 -1,-0.1 -0.101 53.4 113.4-113.4 33.3 -7.1 2.3 -0.5 30 23 A R + 0 0 195 5,-0.1 2,-0.1 6,-0.0 -2,-0.0 -0.567 46.2 46.4-101.5 166.9 -10.2 1.4 -2.6 31 24 A G S S- 0 0 52 -2,-0.2 5,-0.1 4,-0.1 0, 0.0 -0.191 92.6 -43.6 93.0 171.9 -10.5 -0.8 -5.6 32 25 A L > - 0 0 142 1,-0.1 4,-2.0 -2,-0.1 5,-0.2 -0.067 65.0 -93.6 -67.5 174.2 -9.2 -4.3 -6.3 33 26 A K H > S+ 0 0 73 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.935 127.1 51.8 -55.2 -50.4 -5.6 -5.4 -5.5 34 27 A A H > S+ 0 0 41 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.891 107.5 53.5 -54.3 -42.7 -4.4 -4.5 -9.0 35 28 A E H > S+ 0 0 122 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.908 108.3 49.2 -59.9 -43.8 -5.9 -1.1 -8.6 36 29 A L H X S+ 0 0 8 -4,-2.0 4,-2.3 1,-0.2 5,-0.2 0.870 109.2 53.3 -64.1 -37.4 -4.1 -0.5 -5.3 37 30 A A H X S+ 0 0 1 -4,-2.2 4,-2.3 2,-0.2 -2,-0.2 0.919 111.1 44.9 -64.0 -45.2 -0.8 -1.6 -7.0 38 31 A E H X S+ 0 0 121 -4,-2.2 4,-2.9 2,-0.2 -2,-0.2 0.897 111.8 53.4 -66.2 -41.4 -1.1 0.9 -9.8 39 32 A R H X S+ 0 0 98 -4,-2.3 4,-1.6 2,-0.2 -2,-0.2 0.956 113.5 41.0 -58.3 -54.0 -2.1 3.7 -7.5 40 33 A L H X S+ 0 0 7 -4,-2.3 4,-2.0 1,-0.2 -1,-0.2 0.912 116.1 50.7 -61.6 -44.1 0.9 3.2 -5.2 41 34 A Q H X S+ 0 0 65 -4,-2.3 4,-2.6 -5,-0.2 -1,-0.2 0.890 104.6 58.2 -61.4 -40.9 3.2 2.7 -8.2 42 35 A A H < S+ 0 0 68 -4,-2.9 -1,-0.2 1,-0.2 -2,-0.2 0.898 107.9 46.3 -56.3 -43.2 1.9 5.9 -9.9 43 36 A A H < S+ 0 0 50 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.915 111.2 51.3 -66.6 -44.3 2.9 7.9 -6.8 44 37 A L H < S+ 0 0 73 -4,-2.0 2,-0.7 -5,-0.1 -2,-0.2 0.897 85.3 97.2 -60.1 -41.9 6.4 6.3 -6.7 45 38 A S < - 0 0 84 -4,-2.6 3,-0.1 -5,-0.2 -1,-0.1 -0.304 55.7-178.3 -53.6 98.3 7.0 7.0 -10.4 46 39 A G + 0 0 61 -2,-0.7 -1,-0.1 1,-0.1 -3,-0.1 -0.711 15.8 168.2-107.3 82.8 9.0 10.2 -10.1 47 40 A P + 0 0 113 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.495 29.7 140.1 -69.7 -2.3 9.7 11.4 -13.7 48 41 A S - 0 0 113 1,-0.1 2,-1.0 2,-0.1 -2,-0.1 -0.221 41.6-156.8 -47.9 113.2 10.9 14.6 -12.2 49 42 A S 0 0 127 1,-0.0 -1,-0.1 -2,-0.0 0, 0.0 -0.745 360.0 360.0-100.2 87.9 13.9 15.6 -14.2 50 43 A G 0 0 125 -2,-1.0 -2,-0.1 0, 0.0 -1,-0.0 -0.520 360.0 360.0 88.2 360.0 16.0 17.9 -12.0